A Knowledge Graph Reasoning Approach Integrating Attention-based LSTM and Multi-Agent Reinforcement Learning

计算机科学 可解释性 杠杆(统计) 推论 知识图 人工智能 强化学习 聚类分析 机器学习 图形 理论计算机科学
作者
Qingqing Wang,Jiao Han,Danpu Zhang,Xuemei Dong
标识
DOI:10.1109/icbase59196.2023.10303211
摘要

Knowledge reasoning methods play a pivotal role in various applications, including knowledge graph completion, knowledge-based question answering, and knowledge recommendation. Among these methods, path-based multi-hop reasoning techniques have the ability to leverage the rich graph information in knowledge graphs beyond triplets, but they still encounter certain challenges. Existing multi-hop knowledge reasoning methods heavily rely on data and lack interpretability. Additionally, the vast exploration space of paths, composed of numerous entities and relations in large knowledge graphs, often leads to irrelevant and redundant exploration. To address these challenges, this paper proposes a novel knowledge reasoning method named ALMARL (Attention-based LSTM and Multi-Agent Reinforcement Learning for Knowledge Graph Reasoning). It utilizes Attention-based LSTM in conjunction with multi-agent reinforcement learning. The method first employs clustering techniques to group entities. Based on the clustering results, multi-agents at different levels are established to selectively explore certain clusters or limit the search to specific clusters, effectively reducing the exploration of irrelevant entities and minimizing redundant exploration. Subsequently, the agents efficiently explore paths and effectively mine deep semantic information in entity relationships through the integration of Attention-based LSTM. Finally, the model produces inference results and extracts interpretable paths. We evaluate our proposed model on two types of tasks: link prediction and fact prediction. Experimental results demonstrate significant performance improvements compared to several competitive baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜紫菜完成签到,获得积分10
1秒前
zhugongwangdawei完成签到,获得积分10
1秒前
admin发布了新的文献求助10
1秒前
1秒前
leodu发布了新的文献求助10
2秒前
芹菜完成签到,获得积分10
2秒前
SHAO应助璇22采纳,获得10
2秒前
2秒前
DDKK发布了新的文献求助50
3秒前
ily.完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
Ava应助胡导家的菜狗采纳,获得10
5秒前
Hi完成签到 ,获得积分10
6秒前
充电宝应助lilianan采纳,获得10
6秒前
lin发布了新的文献求助20
6秒前
美好斓发布了新的文献求助30
7秒前
取昵称好难完成签到,获得积分10
7秒前
why完成签到,获得积分10
7秒前
8秒前
XIAOLI完成签到,获得积分10
8秒前
Fannia发布了新的文献求助10
8秒前
爆米花应助嘻嘻嘻采纳,获得10
8秒前
LY完成签到,获得积分10
8秒前
隐形发布了新的文献求助10
8秒前
JoshuaChen发布了新的文献求助10
9秒前
orixero应助xiaowen采纳,获得10
10秒前
SHAO应助璇22采纳,获得10
10秒前
我不是很帅完成签到,获得积分10
10秒前
sss发布了新的文献求助10
11秒前
11秒前
于是完成签到,获得积分10
12秒前
12秒前
研友_nvGWwZ发布了新的文献求助10
13秒前
1m4完成签到,获得积分10
13秒前
SYLH应助跳跃梦蕊采纳,获得20
13秒前
端庄雨兰完成签到,获得积分20
13秒前
我爱陶子完成签到 ,获得积分10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620