A debiased self-training framework with graph self-supervised pre-training aided for semi-supervised rumor detection

计算机科学 谣言 杠杆(统计) 人工智能 机器学习 图形 标记数据 半监督学习 监督学习 训练集 模式识别(心理学) 人工神经网络 公共关系 理论计算机科学 政治学
作者
Yuhan Qiao,Chaoqun Cui,Yiying Wang,Caiyan Jia
出处
期刊:Neurocomputing [Elsevier]
卷期号:604: 128314-128314
标识
DOI:10.1016/j.neucom.2024.128314
摘要

Existing rumor detection models have achieved remarkable performance in fully-supervised settings. However, it is time-consuming and labor-intensive to obtain extensive labeled rumor data. To mitigate the reliance on labeled data, semi-supervised learning (SSL), jointly learning from labeled and unlabeled samples, achieves significant performance improvements at low costs. Commonly used self-training methods in SSL, despite their simplicity and efficiency, suffer from the notorious confirmation bias, which can be seen as the accumulation of noise arising from utilization of incorrect pseudo-labels. To deal with the problem, in this study, we propose a debiased self-training framework with graph self-supervised pre-training for semi-supervised rumor detection. First, to enhance the initial model for self-training and reduce the generation of incorrect pseudo-labels in early stages, we leverage the rumor propagation structures of massive unlabeled data for graph self-supervised pre-training. Second, we improve the quality of pseudo-labels by proposing a pseudo-labeling strategy with self-adaptive thresholds, which consists of self-paced global thresholds controlling the overall utilization process of pseudo-labels and local class-specific thresholds attending to the learning status of each class. Extensive experiments on four public benchmarks demonstrate that our method significantly outperforms previous rumor detection baselines in semi-supervised settings, especially when labeled samples are extremely scarce. Notably, we have achieved 96.3% accuracy on Weibo with 500 labels per class and 86.0% accuracy with just 5 labels per class.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长欢发布了新的文献求助30
刚刚
刚刚
2秒前
何浏亮完成签到,获得积分10
3秒前
YANGLan发布了新的文献求助10
3秒前
3秒前
悦耳的忘幽应助奔流的河采纳,获得10
3秒前
4秒前
香蕉觅云应助聪慧橘子采纳,获得10
4秒前
4秒前
独特的凌丝发布了新的文献求助100
5秒前
纪鹏飞发布了新的文献求助10
5秒前
5秒前
5秒前
xingyue完成签到,获得积分20
6秒前
6秒前
King完成签到,获得积分10
6秒前
畅快芝麻发布了新的文献求助10
6秒前
6秒前
小茉莉发布了新的文献求助10
7秒前
8秒前
Sailo发布了新的文献求助30
8秒前
8秒前
9秒前
我是老大应助nikola采纳,获得10
9秒前
善学以致用应助zyzlliu采纳,获得10
9秒前
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
不配.应助小玲子采纳,获得10
11秒前
夏青荷发布了新的文献求助10
11秒前
明理雁蓉发布了新的文献求助10
12秒前
斯文败类应助纪鹏飞采纳,获得10
12秒前
orixero应助畅快芝麻采纳,获得10
12秒前
脑洞疼应助哈哈哈哈采纳,获得10
12秒前
叶黄戍发布了新的文献求助10
13秒前
13秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3411041
求助须知:如何正确求助?哪些是违规求助? 3014509
关于积分的说明 8864142
捐赠科研通 2701959
什么是DOI,文献DOI怎么找? 1481413
科研通“疑难数据库(出版商)”最低求助积分说明 684839
邀请新用户注册赠送积分活动 679333