清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modality-Aware Discriminative Fusion Network for Integrated Analysis of Brain Imaging Genomics

判别式 模态(人机交互) 神经影像学 计算机科学 人工智能 计算生物学 基因组学 模式识别(心理学) 神经科学 生物 基因组 遗传学 基因
作者
Xiaoqi Sheng,Hongmin Cai,Yongwei Nie,Shengfeng He,Yiu‐ming Cheung,Jiazhou Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3439530
摘要

Mild cognitive impairment (MCI) represents an early stage of Alzheimer's disease (AD), characterized by subtle clinical symptoms that pose challenges for accurate diagnosis. The quest for the identification of MCI individuals has highlighted the importance of comprehending the underlying mechanisms of disease causation. Integrated analysis of brain imaging and genomics offers a promising avenue for predicting MCI risk before clinical symptom onset. However, most existing methods face challenges in: 1) mining the brain network-specific topological structure and addressing the single nucleotide polymorphisms (SNPs)-related noise contamination and 2) extracting the discriminative properties of brain imaging genomics, resulting in limited accuracy for MCI diagnosis. To this end, a modality-aware discriminative fusion network (MA-DFN) is proposed to integrate the complementary information from brain imaging genomics to diagnose MCI. Specifically, we first design two modality-specific feature extraction modules: the graph convolutional network with edge-augmented self-attention module (GCN-EASA) and the deep adversarial denoising autoencoder module (DAD-AE), to capture the topological structure of brain networks and the intrinsic distribution of SNPs. Subsequently, a discriminative-enhanced fusion network with correlation regularization module (DFN-CorrReg) is employed to enhance inter-modal consistency and between-class discrimination in brain imaging and genomics. Compared to other state-of-the-art approaches, MA-DFN not only exhibits superior performance in stratifying cognitive normal (CN) and MCI individuals but also identifies disease-related brain regions and risk SNPs locus, which hold potential as putative biomarkers for MCI diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助圈地自萌X采纳,获得10
58秒前
58秒前
LiangRen完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Adc应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Hello应助刘国建郭菱香采纳,获得10
1分钟前
圈地自萌X发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
小鱼女侠完成签到 ,获得积分10
1分钟前
Vintoe完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
Leon发布了新的文献求助20
2分钟前
2分钟前
2分钟前
Leon完成签到,获得积分10
2分钟前
tingalan完成签到,获得积分0
2分钟前
赵一完成签到 ,获得积分10
2分钟前
3分钟前
上官若男应助研友_拓跋戾采纳,获得10
3分钟前
Thi发布了新的文献求助10
3分钟前
无悔完成签到 ,获得积分0
3分钟前
笔墨纸砚完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Thi完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
吃饱再睡完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715179
求助须知:如何正确求助?哪些是违规求助? 5231114
关于积分的说明 15274068
捐赠科研通 4866203
什么是DOI,文献DOI怎么找? 2612756
邀请新用户注册赠送积分活动 1562941
关于科研通互助平台的介绍 1520304