Modality-Aware Discriminative Fusion Network for Integrated Analysis of Brain Imaging Genomics

判别式 模态(人机交互) 神经影像学 计算机科学 人工智能 计算生物学 基因组学 模式识别(心理学) 神经科学 生物 基因组 遗传学 基因
作者
Xiaoqi Sheng,Hongmin Cai,Yongwei Nie,Shengfeng He,Yiu‐ming Cheung,Jiazhou Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3439530
摘要

Mild cognitive impairment (MCI) represents an early stage of Alzheimer's disease (AD), characterized by subtle clinical symptoms that pose challenges for accurate diagnosis. The quest for the identification of MCI individuals has highlighted the importance of comprehending the underlying mechanisms of disease causation. Integrated analysis of brain imaging and genomics offers a promising avenue for predicting MCI risk before clinical symptom onset. However, most existing methods face challenges in: 1) mining the brain network-specific topological structure and addressing the single nucleotide polymorphisms (SNPs)-related noise contamination and 2) extracting the discriminative properties of brain imaging genomics, resulting in limited accuracy for MCI diagnosis. To this end, a modality-aware discriminative fusion network (MA-DFN) is proposed to integrate the complementary information from brain imaging genomics to diagnose MCI. Specifically, we first design two modality-specific feature extraction modules: the graph convolutional network with edge-augmented self-attention module (GCN-EASA) and the deep adversarial denoising autoencoder module (DAD-AE), to capture the topological structure of brain networks and the intrinsic distribution of SNPs. Subsequently, a discriminative-enhanced fusion network with correlation regularization module (DFN-CorrReg) is employed to enhance inter-modal consistency and between-class discrimination in brain imaging and genomics. Compared to other state-of-the-art approaches, MA-DFN not only exhibits superior performance in stratifying cognitive normal (CN) and MCI individuals but also identifies disease-related brain regions and risk SNPs locus, which hold potential as putative biomarkers for MCI diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
paul完成签到,获得积分10
刚刚
小鞋完成签到,获得积分10
1秒前
开心青旋发布了新的文献求助10
1秒前
fztnh发布了新的文献求助10
1秒前
无名花生完成签到 ,获得积分10
1秒前
3秒前
4秒前
4秒前
杜若完成签到,获得积分10
4秒前
4秒前
木森ab完成签到,获得积分20
6秒前
paul发布了新的文献求助10
7秒前
8秒前
MEME发布了新的文献求助10
11秒前
11秒前
情怀应助LSH970829采纳,获得10
11秒前
CHINA_C13发布了新的文献求助10
14秒前
Mars发布了新的文献求助10
15秒前
哈哈哈完成签到,获得积分10
15秒前
玛卡巴卡应助平常的毛豆采纳,获得100
16秒前
默默的青旋完成签到,获得积分10
17秒前
20秒前
搜集达人应助淡淡采白采纳,获得10
20秒前
高高代珊完成签到 ,获得积分10
21秒前
gmc发布了新的文献求助10
22秒前
22秒前
23秒前
善学以致用应助Mian采纳,获得10
23秒前
学科共进发布了新的文献求助60
24秒前
LWJ完成签到 ,获得积分10
24秒前
24秒前
缓慢的糖豆完成签到,获得积分10
25秒前
阉太狼完成签到,获得积分10
25秒前
26秒前
soory完成签到,获得积分10
27秒前
任性的傲柏完成签到,获得积分10
27秒前
lwk205完成签到,获得积分0
27秒前
28秒前
一一完成签到,获得积分10
28秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824