Modality-Aware Discriminative Fusion Network for Integrated Analysis of Brain Imaging Genomics

判别式 模态(人机交互) 神经影像学 计算机科学 人工智能 计算生物学 基因组学 模式识别(心理学) 神经科学 生物 基因组 遗传学 基因
作者
Xiaoqi Sheng,Hongmin Cai,Yongwei Nie,Shengfeng He,Yiu‐ming Cheung,Jiazhou Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3439530
摘要

Mild cognitive impairment (MCI) represents an early stage of Alzheimer's disease (AD), characterized by subtle clinical symptoms that pose challenges for accurate diagnosis. The quest for the identification of MCI individuals has highlighted the importance of comprehending the underlying mechanisms of disease causation. Integrated analysis of brain imaging and genomics offers a promising avenue for predicting MCI risk before clinical symptom onset. However, most existing methods face challenges in: 1) mining the brain network-specific topological structure and addressing the single nucleotide polymorphisms (SNPs)-related noise contamination and 2) extracting the discriminative properties of brain imaging genomics, resulting in limited accuracy for MCI diagnosis. To this end, a modality-aware discriminative fusion network (MA-DFN) is proposed to integrate the complementary information from brain imaging genomics to diagnose MCI. Specifically, we first design two modality-specific feature extraction modules: the graph convolutional network with edge-augmented self-attention module (GCN-EASA) and the deep adversarial denoising autoencoder module (DAD-AE), to capture the topological structure of brain networks and the intrinsic distribution of SNPs. Subsequently, a discriminative-enhanced fusion network with correlation regularization module (DFN-CorrReg) is employed to enhance inter-modal consistency and between-class discrimination in brain imaging and genomics. Compared to other state-of-the-art approaches, MA-DFN not only exhibits superior performance in stratifying cognitive normal (CN) and MCI individuals but also identifies disease-related brain regions and risk SNPs locus, which hold potential as putative biomarkers for MCI diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿航完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助150
1秒前
2秒前
wen完成签到 ,获得积分10
2秒前
科研小垃圾完成签到,获得积分10
2秒前
3秒前
熊姣凤完成签到 ,获得积分10
3秒前
jiayou彭完成签到,获得积分10
3秒前
YML完成签到,获得积分10
4秒前
汉堡包应助李亚雄采纳,获得10
4秒前
甜蜜的马里奥完成签到,获得积分10
4秒前
浮游应助LaTeXer采纳,获得10
6秒前
超帅凌文完成签到 ,获得积分10
7秒前
123321完成签到 ,获得积分10
7秒前
wql完成签到,获得积分10
8秒前
石乾刚完成签到,获得积分20
8秒前
沝沝完成签到 ,获得积分10
8秒前
小虎完成签到,获得积分10
8秒前
YML发布了新的文献求助10
9秒前
白白关注了科研通微信公众号
10秒前
科研通AI2S应助WXY采纳,获得10
10秒前
Gimmy完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助50
11秒前
情怀应助科研通管家采纳,获得10
11秒前
天马心空应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
zhonglv7应助科研通管家采纳,获得10
11秒前
Frosch应助科研通管家采纳,获得30
11秒前
果果应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
lin应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5140833
求助须知:如何正确求助?哪些是违规求助? 4339316
关于积分的说明 13515046
捐赠科研通 4178957
什么是DOI,文献DOI怎么找? 2291500
邀请新用户注册赠送积分活动 1292177
关于科研通互助平台的介绍 1234559