Modality-Aware Discriminative Fusion Network for Integrated Analysis of Brain Imaging Genomics

判别式 模态(人机交互) 神经影像学 计算机科学 人工智能 计算生物学 基因组学 模式识别(心理学) 神经科学 生物 基因组 遗传学 基因
作者
Xiaoqi Sheng,Hongmin Cai,Yongwei Nie,Shengfeng He,Yiu‐ming Cheung,Jiazhou Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3439530
摘要

Mild cognitive impairment (MCI) represents an early stage of Alzheimer's disease (AD), characterized by subtle clinical symptoms that pose challenges for accurate diagnosis. The quest for the identification of MCI individuals has highlighted the importance of comprehending the underlying mechanisms of disease causation. Integrated analysis of brain imaging and genomics offers a promising avenue for predicting MCI risk before clinical symptom onset. However, most existing methods face challenges in: 1) mining the brain network-specific topological structure and addressing the single nucleotide polymorphisms (SNPs)-related noise contamination and 2) extracting the discriminative properties of brain imaging genomics, resulting in limited accuracy for MCI diagnosis. To this end, a modality-aware discriminative fusion network (MA-DFN) is proposed to integrate the complementary information from brain imaging genomics to diagnose MCI. Specifically, we first design two modality-specific feature extraction modules: the graph convolutional network with edge-augmented self-attention module (GCN-EASA) and the deep adversarial denoising autoencoder module (DAD-AE), to capture the topological structure of brain networks and the intrinsic distribution of SNPs. Subsequently, a discriminative-enhanced fusion network with correlation regularization module (DFN-CorrReg) is employed to enhance inter-modal consistency and between-class discrimination in brain imaging and genomics. Compared to other state-of-the-art approaches, MA-DFN not only exhibits superior performance in stratifying cognitive normal (CN) and MCI individuals but also identifies disease-related brain regions and risk SNPs locus, which hold potential as putative biomarkers for MCI diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
萌宝发布了新的文献求助10
2秒前
lennon完成签到,获得积分10
2秒前
霜降发布了新的文献求助10
2秒前
小小完成签到,获得积分10
2秒前
悦耳的谷芹完成签到,获得积分10
2秒前
传奇3应助为学日益采纳,获得10
2秒前
共享精神应助值得采纳,获得10
3秒前
cj发布了新的文献求助10
3秒前
4秒前
4秒前
ksxx完成签到,获得积分20
4秒前
科目三应助个性湘采纳,获得10
4秒前
Xenogenesis发布了新的文献求助10
4秒前
5秒前
莉莉发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
Lucas应助智慧吗喽采纳,获得10
7秒前
开开发布了新的文献求助10
8秒前
8秒前
9秒前
Cchu应助Emma采纳,获得20
9秒前
9秒前
10秒前
10秒前
李健应助林灵凌采纳,获得10
10秒前
卖粥的果完成签到 ,获得积分10
11秒前
12秒前
Cc关闭了Cc文献求助
13秒前
非鱼鱼子发布了新的文献求助10
13秒前
Rose发布了新的文献求助10
13秒前
等你下课完成签到,获得积分10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
69应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974643
求助须知:如何正确求助?哪些是违规求助? 3519094
关于积分的说明 11196979
捐赠科研通 3255182
什么是DOI,文献DOI怎么找? 1797700
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130