卤化物
三元运算
激子
材料科学
凝聚态物理
物理
化学
无机化学
计算机科学
程序设计语言
作者
Jiahao Xie,Zewei Li,Shengqiao Wang,Lijun Zhang
标识
DOI:10.1088/1674-1056/ad7e9c
摘要
Abstract Ternary metal halides based on Cu(I) and Ag(I) have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties, low toxicity, and robust stability. While the self-trapped excitons (STEs) emission mechanisms of Cu(I) halides are well understood, the STEs in Ag(I) halides remain less thoroughly explored. This study explores the STE emission efficiency within the A 2 AgX 3 (A = Rb, Cs; X = Cl, Br, I) system by identifying three distinct STE states in each material and calculating their configuration coordinate diagrams. We find that the STE emission efficiency in this system is mainly determined by STE stability and influenced by self-trapping and quenching barriers. Moreover, we investigate the impact of structural compactness on emission efficiency and find that the excessive electron-phonon coupling in this system can be reduced by increasing structural compactness. The atomic packing factor is identified as a low-cost and effective descriptor for predicting STE emission efficiency in both Cs 2 AgX 3 and Rb 2 AgX 3 systems. These findings can deepen our understanding of STE behavior in metal halide materials and offer valuable insights for the design of efficient STE luminescent materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI