Intelligent detection and recognition of road cracks based on improved YOLOV8

计算机科学 人工智能 模式识别(心理学) 计算机视觉
作者
Hong Zhang,Junwei Zhang,Qian Zhan
标识
DOI:10.1117/12.3049951
摘要

Deep learning plays a vital role in road crack detection, enabling improved detection accuracy, reduced costs, and facilitated automated maintenance, thus enhancing road safety and traffic efficiency. However, most of their remarkable performance relies on complex and costly computational resources, which often cannot meet the requirements for both speed and accuracy in mobile deployment terminals. In this paper, to address the trade-off between high accuracy and real-time performance, an efficient YOLOv8-improved network is proposed. This network not only reduces network redundancy but also significantly improves inference speed, achieving a balance between high accuracy and real-time performance. This paper employs LAMP pruning techniques to optimize the model as the student model in knowledge distillation, and further designs a teacher network that integrates the BAM attention module, C2f-DynamicConv, and CARAFE upsampling operator to provide feature knowledge distillation for the pruned model. The BAM module enhances the network's sensitivity to critical information, C2f-DynamicConv expands the receptive field to enhance feature extraction capabilities, and CARAFE, based on content-adaptive upsampling, aggregates contextual information to provide richer features for prediction tasks. Experimental data shows that our model achieves a significant 69.9% improvement in FPS and a 3.98% increase in map@50 accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
numagok完成签到,获得积分10
刚刚
1秒前
景行行止完成签到 ,获得积分10
2秒前
2秒前
毛豆应助哈哈哈采纳,获得10
3秒前
CipherSage应助文献下载中采纳,获得10
3秒前
白宇发布了新的文献求助10
4秒前
萧水白应助欧皇采纳,获得10
4秒前
柯擎汉完成签到,获得积分10
5秒前
小果子发布了新的文献求助10
6秒前
7秒前
慕青应助醉熏的友卉采纳,获得10
8秒前
名字好长啊完成签到,获得积分10
8秒前
小灰灰完成签到,获得积分10
9秒前
卫半烟完成签到,获得积分10
9秒前
9秒前
12秒前
12秒前
深情安青应助晚庭落秋风采纳,获得10
14秒前
bkagyin应助景行行止采纳,获得10
14秒前
16秒前
17秒前
万能图书馆应助刘老哥6采纳,获得10
17秒前
18秒前
开心青寒完成签到,获得积分10
19秒前
一碗鱼发布了新的文献求助10
21秒前
21秒前
ralph_liu完成签到,获得积分20
21秒前
michaelvin完成签到,获得积分10
22秒前
ddddy关注了科研通微信公众号
23秒前
星辰大海应助Ebony采纳,获得10
24秒前
24秒前
科研通AI2S应助陶醉的听露采纳,获得10
24秒前
大渣饼完成签到 ,获得积分10
25秒前
脑洞疼应助纯牛奶采纳,获得10
26秒前
zho发布了新的文献求助30
26秒前
痴情的机器猫完成签到,获得积分20
27秒前
一二发布了新的文献求助10
27秒前
27秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270931
求助须知:如何正确求助?哪些是违规求助? 2910251
关于积分的说明 8353197
捐赠科研通 2580762
什么是DOI,文献DOI怎么找? 1403704
科研通“疑难数据库(出版商)”最低求助积分说明 655921
邀请新用户注册赠送积分活动 635279