Reconstruction of 2‐m Air Temperature From ERA5 Reanalysis at Dome A, Antarctica

气候学 空气温度 环境科学 地面气温 云量 风速 大气科学 气候变化 全球变暖 句号(音乐) 气象学 地质学 地理 云计算 海洋学 操作系统 物理 计算机科学 声学
作者
Yifan Wu,Yu Jiang,Yi Zhang,Yichen Li,Xin Chen,Wenqian Zhang,Xi Zhao
出处
期刊:International Journal of Climatology [Wiley]
标识
DOI:10.1002/joc.8722
摘要

ABSTRACT In this study, we jointly used in situ air temperature from AWS and reanalysis data from ERA5 to make the first‐ever reconstruction of a 42‐year (1978–2020) air temperature time series for Dome A, Antarctica. By analysing the impact of environmental variables, we found that the 10‐m u‐component of wind was the predominant one for air temperature bias between ERA5 and AWS, followed by total cloud cover. Air temperature deviations between ERA5 and AWS during the period of 2005–2020 were successfully reduced by applying a random forest (RF) model, decreasing the bias by 0.52°C, the RMSE by 3.16°C and the MAE by 2.77°C. We next applied the RF model to predict the 2‐m air temperature difference which was added back to correct ERA5 from 1978 to 2004. This yielded an accurate time series of air temperature from 1978 to 2020. Using the innovative trend analysis method to analyse the temperature trend of the corrected data, we found that Dome A has experienced a gradual warming of 0.10°C dec −1 over the 42‐year period. Among the seasonal temperature changes, spring showed a significant warming trend of 0.57°C dec −1 , autumn and winter showed no significant warming, while summer showed a slightly cooling trend. Also, over the 42‐year analysis period, a stable oscillation period of ~28 year was observed. This cycle emerged as the dominant pattern, influencing the overall temperature evolution. The method proposed in this research, which combines machine learning with AWS to correct ERA5 air temperature data, holds the potential to address spurious changes of reanalysis data in long‐time series studies, thus improving the reliability of trend analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助xty采纳,获得10
1秒前
kong发布了新的文献求助10
4秒前
呓语完成签到,获得积分10
5秒前
深情安青应助changjing5638采纳,获得10
5秒前
烟花应助简单的惋庭采纳,获得10
5秒前
GUMC发布了新的文献求助20
5秒前
上官若男应助东海帝王采纳,获得10
6秒前
XD完成签到,获得积分10
7秒前
Echo发布了新的文献求助10
8秒前
8秒前
9秒前
韩较瘦完成签到,获得积分10
9秒前
冬至季完成签到,获得积分10
10秒前
tuo zhang发布了新的文献求助10
11秒前
orixero应助yigubigu采纳,获得10
14秒前
wu发布了新的文献求助10
16秒前
SciGPT应助KitasanHN采纳,获得10
19秒前
power完成签到,获得积分10
20秒前
zyj完成签到,获得积分10
20秒前
21秒前
22秒前
22秒前
24秒前
25秒前
26秒前
28秒前
28秒前
墨尘发布了新的文献求助30
29秒前
29秒前
Docoroli发布了新的文献求助10
30秒前
FashionBoy应助xxx采纳,获得10
30秒前
30秒前
领导范儿应助fekngln采纳,获得10
31秒前
32秒前
九千七发布了新的文献求助10
32秒前
Orange应助arrow采纳,获得10
32秒前
实验顺利发布了新的文献求助10
33秒前
景__完成签到 ,获得积分10
35秒前
35秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329350
求助须知:如何正确求助?哪些是违规求助? 2959031
关于积分的说明 8594090
捐赠科研通 2637507
什么是DOI,文献DOI怎么找? 1443599
科研通“疑难数据库(出版商)”最低求助积分说明 668773
邀请新用户注册赠送积分活动 656176