作者
Xiaomei Li,Qingyang Wang,A. Q. Guo,Q Chen,Ye Qiu,You Li,L L Zhang,Yang Guo,Xiaolin Meng,Shiqian Li,G.L. LIU,L. Zhang,Jian Liu,XIANYANG LI,Lin Cai,Xiaowei Cheng,Chuan Liu,Xiang Wang,Andrew Wood,J. Murray,G.L. LIU,Jin Li,Xiaodong Huang,Dengfeng Dou
摘要
Despite the exciting progress of the bifunctional degrader molecules, also known as proteolysis-targeting chimeras (PROTACs), the rapidly expanding field is still significantly hampered by the lacking of available E3 ligase ligands. Our research bridges this gap by uncovering a series of small-molecule ligands to the E3 ligase TRIM21 through DNA-Encoded Library (DEL) technology. We confirmed their interaction with TRIM21 using crystallography and demonstrated their anti-proliferative effects across various cancer cell types. Furthermore, proteomic studies identified that the mRNA Export Factor GLE1, and the Nuclear Pore Complex Protein NUP155, were significantly down-regulated upon TRIM21 ligand treatment. This degradation required TRIM21 and was ubiquitin-proteasome-dependent. More specifically, NUP155 was the primary target for the TRIM21 ligands, while GLE1 was considered a passenger target upon the initial degradation of NUP155. Using immunofluorescence techniques, we further demonstrated that the degradation of GLE1 and NUP155 proteins impaired the integrity of the nuclear envelope, leading to cell death. Highlighted by this research, a novel mode of action has been discovered for the TRIM21 E3 ligase ligand, acting as a monovalent degrader that triggers de novo interaction with functional complex proteins and induces their degradation.