Nanoplastic toxicity induces metabolic shifts in Populus × euramericana cv. '74/76' revealed by multi-omics analysis

光合作用 类囊体 代谢组学 毒性 代谢途径 叶绿素 抗氧化剂 叶绿体 氧化应激 生物 植物生理学 萎蔫 光合效率 类黄酮 转录组 化学 新陈代谢 植物 生物化学 生物信息学 基因 基因表达 有机化学
作者
Liren Xu,Chong Liu,Yachao Ren,Yinran Huang,Yichao Liu,Shuxiang Feng,Xinyu Zhong,Donglin Fu,Xiaohong Zhou,Jinmao Wang,Yujun Liu,Minsheng Yang
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:470: 134148-134148
标识
DOI:10.1016/j.jhazmat.2024.134148
摘要

There is increasing global concern regarding the pervasive issue of plastic pollution. We investigated the response of Populus × euramericana cv. '74/76' to nanoplastic toxicity via phenotypic, microanatomical, physiological, transcriptomic, and metabolomic approaches. Polystyrene nanoplastics (PS-NPs) were distributed throughout the test plants after the application of PS-NPs. Nanoplastics principally accumulated in the roots; minimal fractions were translocated to the leaves. In leaves, however, PS-NPs easily penetrated membranes and became concentrated in chloroplasts, causing thylakoid disintegration and chlorophyll degradation. Finally, oxidant damage from the influx of PS-NPs led to diminished photosynthesis, stunted growth, and etiolation and/or wilting. By integrating dual-omics data, we found that plants could counteract mild PS-NP-induced oxidative stress through the antioxidant enzyme system without initiating secondary metabolic defense mechanisms. In contrast, severe PS-NP treatments promoted a shift in metabolic pattern from primary metabolism to secondary metabolic defense mechanisms, an effect that was particularly pronounced during the upregulation of flavonoid biosynthesis. Our findings provide a useful framework from which to further clarify the roles of key biochemical pathways in plant responses to nanoplastic toxicity. Our work also supports the development of effective strategies to mitigate the environmental risks of nanoplastics by biologically immobilizing them in contaminated lands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zls发布了新的文献求助10
1秒前
飞在夏夜的猫完成签到,获得积分10
1秒前
一二发布了新的文献求助10
4秒前
5秒前
陳.完成签到 ,获得积分10
6秒前
RenYigmin完成签到,获得积分10
6秒前
CipherSage应助mzy采纳,获得10
7秒前
小晋完成签到,获得积分10
8秒前
3AM完成签到,获得积分10
9秒前
asdfj发布了新的文献求助10
10秒前
10秒前
李海妍发布了新的文献求助30
10秒前
11秒前
晴天完成签到 ,获得积分10
11秒前
11秒前
AU完成签到 ,获得积分10
12秒前
15秒前
16秒前
等待的发箍完成签到,获得积分10
16秒前
16秒前
星辰大海应助一二采纳,获得10
20秒前
Cancey发布了新的文献求助10
22秒前
打鬼忍者完成签到 ,获得积分10
22秒前
23秒前
正在获取昵称中...完成签到,获得积分10
25秒前
27秒前
27秒前
SciGPT应助Hcollide采纳,获得10
29秒前
30秒前
YY完成签到,获得积分20
32秒前
李健的小迷弟应助一二采纳,获得10
34秒前
hhh完成签到,获得积分10
34秒前
robi发布了新的文献求助10
35秒前
36秒前
温馨完成签到,获得积分10
36秒前
所所应助科研通管家采纳,获得10
36秒前
36秒前
田様应助科研通管家采纳,获得10
36秒前
Ava应助科研通管家采纳,获得10
36秒前
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785901
关于积分的说明 7774393
捐赠科研通 2441736
什么是DOI,文献DOI怎么找? 1298162
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825