Experimentally informed structure optimization of amorphous TiO2 films grown by atomic layer deposition

材料科学 原子层沉积 无定形固体 薄膜 扫描透射电子显微镜 半导体 透射电子显微镜 化学物理 纳米技术 光电子学 结晶学 化学
作者
Jun Meng,Mehrdad Abbasi Gharacheh,Yutao Dong,Corey Carlos,Xudong Wang,Jinwoo Hwang,Dane Morgan
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:15 (2): 718-729 被引量:3
标识
DOI:10.1039/d2nr03614b
摘要

Amorphous titanium dioxide TiO2 (a-TiO2) has been widely studied, particularly as a protective coating layer on semiconductors to prevent corrosion and promote electron-hole conduction in photoelectrochemical reactions. The stability and longevity of a-TiO2 is strongly affected by the thickness and structural heterogeneity, implying that understanding the structure properties of a-TiO2 is crucial for improving the performance. This study characterized the structural and electronic properties of a-TiO2 thin films (∼17 nm) grown on Si by atomic layer deposition (ALD). Fluctuation spectra V(k) and angular correlation functions were determined with 4-dimensional scanning transmission electron microscopy (4D-STEM), which revealed the distinctive medium-range ordering in the a-TiO2 film. A realistic atomic model of a-TiO2 was established guided by the medium-range ordering and the previously reported short-range ordering of a-TiO2 film, as well as the interatomic potential. The structure was optimized by the StructOpt code using a genetic algorithm that simultaneously minimizes energy and maximizes the match to experimental short- and medium-range ordering. The StructOpt a-TiO2 model presents improved agreements with the medium-range ordering and the k-space location of the dominant 2-fold angular correlations compared with a traditional melt-quenched model. The electronic structure of the StructOpt a-TiO2 model was studied by ab initio calculations and compared to the crystalline phases and experimental results. This work uncovered the medium-range ordering in a-TiO2 thin films and provided a realistic a-TiO2 structure model for further investigation of structure-property relationships and materials design. In addition, the improved multi-objective optimization package StructOpt was provided for structure determination of complex materials guided by experiments and simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助站在牛顿头顶上采纳,获得10
刚刚
旭日东升完成签到,获得积分10
1秒前
小叶子完成签到 ,获得积分10
3秒前
lxy发布了新的文献求助10
3秒前
what完成签到,获得积分10
4秒前
旭日东升发布了新的文献求助10
4秒前
5秒前
5秒前
丘比特应助mk采纳,获得10
5秒前
8秒前
斯文败类应助leeky采纳,获得10
12秒前
13秒前
14秒前
tata0215完成签到 ,获得积分10
17秒前
17秒前
18秒前
想学习发布了新的文献求助10
19秒前
mk发布了新的文献求助10
20秒前
爱小发布了新的文献求助20
20秒前
20秒前
酷酷小鸽子完成签到,获得积分10
20秒前
xiaotutu发布了新的文献求助10
22秒前
23秒前
leeky完成签到,获得积分10
23秒前
24秒前
24秒前
JoeyCory发布了新的文献求助10
25秒前
黄田武完成签到,获得积分10
25秒前
SYLH应助茜zi采纳,获得10
25秒前
27秒前
27秒前
大个应助余姚采纳,获得10
27秒前
开水泡饼发布了新的文献求助10
28秒前
leeky发布了新的文献求助10
28秒前
mengmenglv发布了新的文献求助20
30秒前
mk完成签到,获得积分10
30秒前
whf发布了新的文献求助10
31秒前
Orange应助Cassiel采纳,获得30
32秒前
小沐发布了新的文献求助30
32秒前
ding应助lishihao采纳,获得10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526155
求助须知:如何正确求助?哪些是违规求助? 3106527
关于积分的说明 9280871
捐赠科研通 2804159
什么是DOI,文献DOI怎么找? 1539302
邀请新用户注册赠送积分活动 716522
科研通“疑难数据库(出版商)”最低求助积分说明 709495