Prediction and Evaluation of Indirect Carbon Emission from Electrical Consumption in Multiple Full-Scale Wastewater Treatment Plants via Automated Machine Learning-Based Analysis

变量(数学) 比例(比率) 碳纤维 计算机科学 环境科学 计量经济学 统计 数学 算法 量子力学 复合数 物理 数学分析
作者
Runze Xu,Yi Li,Yuting Luo,Fang Fang,Qian Feng,Jiashun Cao,Jingyang Luo
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:3 (3): 360-372 被引量:26
标识
DOI:10.1021/acsestengg.2c00306
摘要

The indirect carbon emission from electrical consumption of wastewater treatment plants (WWTPs) accounts for large proportions of their total carbon emissions, which deserves intensive attention. This work proposed an automated machine learning (AutoML)-based indirect carbon emission analysis (ACIA) approach and predicted the specific indirect carbon emission from electrical consumption (SEe; kg CO2/m3) successfully in nine full-scale WWTPs (W1–W9) with different treatment configurations based on the historical operational data. The stacked ensemble models generated by the AutoML accurately predicted the SEe (mean absolute error = 0.02232–0.02352, R2 = 0.65107–0.67509). Then, the variable importance and Shapley additive explanations (SHAP) summary plots qualitatively revealed that the influent volume and the types of secondary and tertiary treatment processes were the most important variables associated with SEe prediction. The interpretation results of partial dependence and individual conditional expectation further verified quantitative relationships between input variables and SEe. Also, low energy efficiency with high indirect carbon emission of WWTPs was distinguished. Compared with traditional carbon emission analysis and prediction methods, the ACIA method could accurately evaluate and predict SEe of WWTPs with different treatment scales and processes with easily available variables and reveal qualitative and quantitative relationships inside datasets simultaneously, which is a powerful tool to benefit the “carbon neutrality” of WWTPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
刚刚
ice发布了新的文献求助10
1秒前
1秒前
光亮的千山完成签到,获得积分10
1秒前
怡然涵双发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
郑波涛发布了新的文献求助10
6秒前
6秒前
Ava应助鱼鱼鱼采纳,获得10
6秒前
所所应助doctorshg采纳,获得30
6秒前
8秒前
共享精神应助Chris0120采纳,获得10
10秒前
乃思发布了新的文献求助10
10秒前
科研通AI2S应助宝儿姐采纳,获得30
11秒前
令狐子轩完成签到,获得积分10
13秒前
14秒前
今后应助gdh采纳,获得10
15秒前
16秒前
Guozixin应助ai化学采纳,获得10
17秒前
18秒前
19秒前
甜蜜笑阳完成签到,获得积分10
19秒前
tang完成签到,获得积分10
20秒前
20秒前
lovexz完成签到,获得积分10
20秒前
烟花应助火星上的白开水采纳,获得10
21秒前
21秒前
22秒前
潇洒书琴发布了新的文献求助10
22秒前
江河发布了新的文献求助10
22秒前
ding应助痴情的路灯采纳,获得10
22秒前
23秒前
鱼鱼鱼发布了新的文献求助10
23秒前
24秒前
tang发布了新的文献求助10
24秒前
Morii1999发布了新的文献求助10
24秒前
orchid完成签到,获得积分10
24秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434477
求助须知:如何正确求助?哪些是违规求助? 3031598
关于积分的说明 8942726
捐赠科研通 2719691
什么是DOI,文献DOI怎么找? 1491881
科研通“疑难数据库(出版商)”最低求助积分说明 689574
邀请新用户注册赠送积分活动 685722