Underwater Image Enhancement by Dehazing With Minimum Information Loss and Histogram Distribution Prior

水下 人工智能 亮度 计算机视觉 计算机科学 对比度(视觉) 直方图 能见度 颜色校正 直方图均衡化 颜色恒定性 图像复原 图像(数学) 模式识别(心理学) 图像处理 光学 地质学 物理 海洋学
作者
Chongyi Li,Jichang Guo,Runmin Cong,Yanwei Pang,Bo Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:25 (12): 5664-5677 被引量:616
标识
DOI:10.1109/tip.2016.2612882
摘要

Images captured under water are usually degraded due to the effects of absorption and scattering. Degraded underwater images show some limitations when they are used for display and analysis. For example, underwater images with low contrast and color cast decrease the accuracy rate of underwater object detection and marine biology recognition. To overcome those limitations, a systematic underwater image enhancement method, which includes an underwater image dehazing algorithm and a contrast enhancement algorithm, is proposed. Built on a minimum information loss principle, an effective underwater image dehazing algorithm is proposed to restore the visibility, color, and natural appearance of underwater images. A simple yet effective contrast enhancement algorithm is proposed based on a kind of histogram distribution prior, which increases the contrast and brightness of underwater images. The proposed method can yield two versions of enhanced output. One version with relatively genuine color and natural appearance is suitable for display. The other version with high contrast and brightness can be used for extracting more valuable information and unveiling more details. Simulation experiment, qualitative and quantitative comparisons, as well as color accuracy and application tests are conducted to evaluate the performance of the proposed method. Extensive experiments demonstrate that the proposed method achieves better visual quality, more valuable information, and more accurate color restoration than several state-of-the-art methods, even for underwater images taken under several challenging scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助Bing采纳,获得10
2秒前
3秒前
上官若男应助干净山彤采纳,获得10
3秒前
顺其自然完成签到 ,获得积分10
5秒前
细腻天蓝完成签到,获得积分10
5秒前
6秒前
Liaost发布了新的文献求助10
6秒前
124332发布了新的文献求助10
7秒前
陈嘻嘻嘻嘻完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
mq发布了新的文献求助10
10秒前
日月同辉完成签到,获得积分10
10秒前
小树苗发布了新的文献求助10
11秒前
tianliyan完成签到 ,获得积分10
12秒前
开心的野狼完成签到 ,获得积分10
12秒前
詹姆斯哈登发布了新的文献求助200
12秒前
小c发布了新的文献求助10
13秒前
Gg发布了新的文献求助10
13秒前
14秒前
tfr06发布了新的文献求助10
14秒前
牙套狗狗发布了新的文献求助10
14秒前
顾矜应助tangdoumama采纳,获得10
15秒前
16秒前
思源应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得30
16秒前
劲秉应助科研通管家采纳,获得20
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
16秒前
Owen应助科研通管家采纳,获得10
16秒前
16秒前
春儿发布了新的文献求助10
17秒前
自由的千易完成签到,获得积分10
18秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270487
求助须知:如何正确求助?哪些是违规求助? 2909871
关于积分的说明 8351344
捐赠科研通 2580345
什么是DOI,文献DOI怎么找? 1403446
科研通“疑难数据库(出版商)”最低求助积分说明 655729
邀请新用户注册赠送积分活动 635133