亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Limitations of Deep Learning in Adversarial Settings

对抗制 计算机科学 人工智能 深度学习 深层神经网络 机器学习 人工神经网络 样品(材料) 脆弱性(计算) 度量(数据仓库) 班级(哲学) 数据挖掘 计算机安全 色谱法 化学
作者
Nicolas Papernot,Patrick McDaniel,Somesh Jha,Matt Fredrikson,Z. Berkay Celik,Ananthram Swami
标识
DOI:10.1109/eurosp.2016.36
摘要

Deep learning takes advantage of large datasets and computationally efficient training algorithms to outperform other approaches at various machine learning tasks. However, imperfections in the training phase of deep neural networks make them vulnerable to adversarial samples: inputs crafted by adversaries with the intent of causing deep neural networks to misclassify. In this work, we formalize the space of adversaries against deep neural networks (DNNs) and introduce a novel class of algorithms to craft adversarial samples based on a precise understanding of the mapping between inputs and outputs of DNNs. In an application to computer vision, we show that our algorithms can reliably produce samples correctly classified by human subjects but misclassified in specific targets by a DNN with a 97% adversarial success rate while only modifying on average 4.02% of the input features per sample. We then evaluate the vulnerability of different sample classes to adversarial perturbations by defining a hardness measure. Finally, we describe preliminary work outlining defenses against adversarial samples by defining a predictive measure of distance between a benign input and a target classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
西山菩提完成签到,获得积分10
4秒前
8秒前
Mr发布了新的文献求助10
9秒前
lc发布了新的文献求助10
12秒前
16秒前
科研通AI6应助lc采纳,获得10
21秒前
Vintoe完成签到 ,获得积分10
33秒前
KINGAZX完成签到 ,获得积分10
1分钟前
1分钟前
GingerF应助bruna采纳,获得50
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助30
2分钟前
2分钟前
xaogny发布了新的文献求助10
2分钟前
2分钟前
3分钟前
无端发布了新的文献求助10
3分钟前
孟繁荣发布了新的文献求助10
3分钟前
鸭鸭完成签到 ,获得积分10
3分钟前
Robin完成签到,获得积分10
3分钟前
小马甲应助孟繁荣采纳,获得10
3分钟前
qc应助萝卜猪采纳,获得10
3分钟前
3分钟前
3分钟前
赘婿应助xaogny采纳,获得10
4分钟前
萝卜猪完成签到,获得积分10
4分钟前
lc发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
xaogny发布了新的文献求助10
4分钟前
NexusExplorer应助lc采纳,获得10
4分钟前
4分钟前
孟繁荣发布了新的文献求助10
4分钟前
4分钟前
5分钟前
科研通AI5应助白华苍松采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4918239
求助须知:如何正确求助?哪些是违规求助? 4190933
关于积分的说明 13015499
捐赠科研通 3960710
什么是DOI,文献DOI怎么找? 2171348
邀请新用户注册赠送积分活动 1189396
关于科研通互助平台的介绍 1097765