AgileGAN

计算机科学 人工智能 自编码 纵向 一般化 过度拟合 计算机视觉 模式识别(心理学) 深度学习 人工神经网络 艺术 数学 数学分析 艺术史
作者
Guoxian Song,Linjie Luo,Jing Liu,Wanli Ma,Chun-Pong Lai,Chuanxia Zheng,Tat-Jen Cham
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:40 (4): 1-13 被引量:20
标识
DOI:10.1145/3450626.3459771
摘要

Portraiture as an art form has evolved from realistic depiction into a plethora of creative styles. While substantial progress has been made in automated stylization, generating high quality stylistic portraits is still a challenge, and even the recent popular Toonify suffers from several artifacts when used on real input images. Such StyleGAN-based methods have focused on finding the best latent inversion mapping for reconstructing input images; however, our key insight is that this does not lead to good generalization to different portrait styles. Hence we propose AgileGAN, a framework that can generate high quality stylistic portraits via inversion-consistent transfer learning. We introduce a novel hierarchical variational autoencoder to ensure the inverse mapped distribution conforms to the original latent Gaussian distribution, while augmenting the original space to a multi-resolution latent space so as to better encode different levels of detail. To better capture attribute-dependent stylization of facial features, we also present an attribute-aware generator and adopt an early stopping strategy to avoid overfitting small training datasets. Our approach provides greater agility in creating high quality and high resolution (1024×1024) portrait stylization models, requiring only a limited number of style exemplars (~100) and short training time (~1 hour). We collected several style datasets for evaluation including 3D cartoons, comics, oil paintings and celebrities. We show that we can achieve superior portrait stylization quality to previous state-of-the-art methods, with comparisons done qualitatively, quantitatively and through a perceptual user study. We also demonstrate two applications of our method, image editing and motion retargeting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赫灵竹完成签到,获得积分10
1秒前
1秒前
xuan完成签到 ,获得积分10
2秒前
3秒前
舒适灵完成签到,获得积分10
3秒前
4秒前
刘育含完成签到,获得积分10
4秒前
5秒前
Lan发布了新的文献求助10
5秒前
星辰大海应助lion_wei采纳,获得10
6秒前
Chelsea发布了新的文献求助30
6秒前
6秒前
6秒前
SYLH应助笑面客采纳,获得10
7秒前
8秒前
8秒前
Andorchid完成签到,获得积分10
8秒前
Ava应助认真白薇采纳,获得10
9秒前
sure完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
七七发布了新的文献求助10
12秒前
14秒前
顾矜应助山山而川采纳,获得10
16秒前
lion_wei发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
科研通AI5应助俏皮的一德采纳,获得10
17秒前
CH发布了新的文献求助10
17秒前
18秒前
kangyz发布了新的文献求助10
18秒前
完美世界应助Lemon采纳,获得10
20秒前
古月发布了新的文献求助30
20秒前
22秒前
DDY发布了新的文献求助10
22秒前
xuan发布了新的文献求助10
22秒前
orixero应助章鱼哥想毕业采纳,获得10
22秒前
月月完成签到,获得积分10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769909
求助须知:如何正确求助?哪些是违规求助? 3314951
关于积分的说明 10174263
捐赠科研通 3030202
什么是DOI,文献DOI怎么找? 1662719
邀请新用户注册赠送积分活动 795068
科研通“疑难数据库(出版商)”最低求助积分说明 756560