Convolutional neural network model for soil moisture prediction and its transferability analysis based on laboratory Vis-NIR spectral data

卷积神经网络 可转让性 校准 学习迁移 遥感 人工智能 计算机科学 人工神经网络 样品(材料) 模式识别(心理学) 机器学习 数学 化学 统计 地理 罗伊特 色谱法
作者
Yu Chen,Lin Li,Michael L. Whiting,Fang Chen,Zhongchang Sun,Kaishan Song,Qinjun Wang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:104: 102550-102550 被引量:17
标识
DOI:10.1016/j.jag.2021.102550
摘要

Laboratory visible near infrared reflectance (Vis-NIR, 400–2500 nm) spectroscopy has the advantages of simplicity, fast and non-destructive which was used for SM prediction. However, many previously proposed models are difficult to transfer to unknown target areas without recalibration. In this study, we first developed a suitable Convolutional Neutral Network (CNN) model and transferred the model to other target areas for two situations using different soil sample backgrounds under 1) the same measurement conditions (DSSM), and 2) under different measurement conditions (DSDM). We also developed the CNN models for the target areas based on their own datasets and traditional PLS models was developed to compare their performances. The results show that one dimensional model (1D-CNN) performed strongly for SM prediction with average R2 up to 0.989 and RPIQ up to 19.59 in the laboratory environment (DSSM). Applying the knowledge-based transfer learning method to an unknown target area improved the R2 from 0.845 to 0.983 under the DSSM and from 0.298 to 0.620 under the DSDM, which performed better than data-based spiking calibration method for traditional PLS models. The results show that knowledge-based transfer learning was suitable for SM prediction under different soil background and measurement conditions and can be a promising approach for remotely estimating SM with the increasing amount of soil dataset in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助sweat采纳,获得10
刚刚
dudu完成签到,获得积分10
刚刚
调皮芷卉完成签到,获得积分10
1秒前
小李儿完成签到,获得积分20
1秒前
NexusExplorer应助积极的无极采纳,获得10
2秒前
2秒前
2秒前
yang完成签到,获得积分10
3秒前
3秒前
夏天就应该爬树完成签到,获得积分10
3秒前
4秒前
4秒前
dd完成签到,获得积分10
4秒前
枝桠完成签到,获得积分10
5秒前
TPolymer完成签到,获得积分10
5秒前
5秒前
6秒前
打打应助zx采纳,获得10
6秒前
jzhou88完成签到,获得积分10
6秒前
6秒前
星河完成签到,获得积分10
7秒前
7秒前
susu发布了新的文献求助10
7秒前
chen发布了新的文献求助10
7秒前
7秒前
小李儿发布了新的文献求助10
8秒前
科研通AI2S应助科研小笨猪采纳,获得10
8秒前
科研通AI2S应助科研小笨猪采纳,获得10
8秒前
8秒前
8秒前
忧虑的羊发布了新的文献求助10
9秒前
念念发布了新的文献求助10
9秒前
不懈奋进应助勤恳惮采纳,获得30
9秒前
张倩完成签到,获得积分10
9秒前
10秒前
FAN发布了新的文献求助10
10秒前
燕子完成签到,获得积分10
11秒前
DKE完成签到,获得积分10
11秒前
adelalady完成签到,获得积分10
11秒前
11秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158884
求助须知:如何正确求助?哪些是违规求助? 2810072
关于积分的说明 7885775
捐赠科研通 2468916
什么是DOI,文献DOI怎么找? 1314424
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012