Comparing the Prognostic Value of Stress Myocardial Perfusion Imaging by Conventional and Cadmium-Zinc Telluride Single-Photon Emission Computed Tomography through a Machine Learning Approach

碲锌镉 随机森林 单光子发射计算机断层摄影术 核医学 医学 支持向量机 算法 冠状动脉疾病 计算机科学 人工智能 内科学 电信 探测器
作者
Valeria Cantoni,Roberta Green,Carlo Ricciardi,Roberta Assante,Leandro Donisi,Emilia Zampella,Giuseppe Cesarelli,Carmela Nappi,Vincenzo Sannino,Valeria Gaudieri,Teresa Mannarino,Andrea Genova,Giovanni De Simini,Alessia Giordano,Adriana D’Antonio,Wanda Acampa,Mario Petretta,Alberto Cuocolo
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Publishing Corporation]
卷期号:2021: 1-8 被引量:4
标识
DOI:10.1155/2021/5288844
摘要

We compared the prognostic value of myocardial perfusion imaging (MPI) by conventional- (C-) single-photon emission computed tomography (SPECT) and cadmium-zinc-telluride- (CZT-) SPECT in a cohort of patients with suspected or known coronary artery disease (CAD) using machine learning (ML) algorithms. A total of 453 consecutive patients underwent stress MPI by both C-SPECT and CZT-SPECT. The outcome was a composite end point of all-cause death, cardiac death, nonfatal myocardial infarction, or coronary revascularization procedures whichever occurred first. ML analysis performed through the implementation of random forest (RF) and k -nearest neighbors (KNN) algorithms proved that CZT-SPECT has greater accuracy than C-SPECT in detecting CAD. For both algorithms, the sensitivity of CZT-SPECT (96% for RF and 60% for KNN) was greater than that of C-SPECT (88% for RF and 53% for KNN). A preliminary univariate analysis was performed through Mann-Whitney tests separately on the features of each camera in order to understand which ones could distinguish patients who will experience an adverse event from those who will not. Then, a machine learning analysis was performed by using Matlab (v. 2019b). Tree, KNN, support vector machine (SVM), Naïve Bayes, and RF were implemented twice: first, the analysis was performed on the as-is dataset; then, since the dataset was imbalanced (patients experiencing an adverse event were lower than the others), the analysis was performed again after balancing the classes through the Synthetic Minority Oversampling Technique. According to KNN and SVM with and without balancing the classes, the accuracy ( p value = 0.02 and p value = 0.01) and recall ( p value = 0.001 and p value = 0.03) of the CZT-SPECT were greater than those obtained by C-SPECT in a statistically significant way. ML approach showed that although the prognostic value of stress MPI by C-SPECT and CZT-SPECT is comparable, CZT-SPECT seems to have higher accuracy and recall.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
KYT完成签到,获得积分10
1秒前
2秒前
赵文若发布了新的文献求助10
3秒前
5秒前
lanxin完成签到,获得积分10
5秒前
沉醉完成签到 ,获得积分10
7秒前
吴世宇发布了新的文献求助10
8秒前
安白发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
昏睡的铭完成签到,获得积分10
12秒前
布蓝图完成签到 ,获得积分10
12秒前
上官若男应助中锅人采纳,获得10
13秒前
大模型应助漂亮的小夏采纳,获得10
15秒前
细腻沅完成签到,获得积分10
17秒前
SYLH应助lanxin采纳,获得10
17秒前
凡事多发布了新的文献求助10
17秒前
中锅人完成签到,获得积分20
17秒前
19秒前
善学以致用应助小帕采纳,获得10
19秒前
等下完这场雨完成签到,获得积分10
22秒前
所所应助凡事多采纳,获得10
22秒前
23秒前
风剑完成签到,获得积分10
24秒前
小马哥完成签到,获得积分10
24秒前
Angleli完成签到,获得积分10
24秒前
lings完成签到 ,获得积分10
24秒前
在水一方应助Hang采纳,获得30
25秒前
小小哈完成签到,获得积分10
25秒前
bommi发布了新的文献求助10
26秒前
平凡发布了新的文献求助10
27秒前
29秒前
litianahang完成签到,获得积分10
30秒前
30秒前
yan1994完成签到,获得积分10
31秒前
平凡完成签到,获得积分10
33秒前
35秒前
Bake完成签到 ,获得积分10
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734585
求助须知:如何正确求助?哪些是违规求助? 3278533
关于积分的说明 10009882
捐赠科研通 2995161
什么是DOI,文献DOI怎么找? 1643223
邀请新用户注册赠送积分活动 781009
科研通“疑难数据库(出版商)”最低求助积分说明 749196