Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators

一般化 人工神经网络 函数逼近 计算机科学 非线性系统 操作员(生物学) 算符理论 深度学习 功能(生物学) 数学 人工智能 离散数学 数学分析 生物化学 量子力学 进化生物学 转录因子 生物 基因 物理 抑制因子 化学
作者
Lu Lu,Pengzhan Jin,Guofei Pang,Zhongqiang Zhang,George Em Karniadakis
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (3): 218-229 被引量:266
标识
DOI:10.1038/s42256-021-00302-5
摘要

It is widely known that neural networks (NNs) are universal approximators of continuous functions. However, a less known but powerful result is that a NN with a single hidden layer can accurately approximate any nonlinear continuous operator. This universal approximation theorem of operators is suggestive of the structure and potential of deep neural networks (DNNs) in learning continuous operators or complex systems from streams of scattered data. Here, we thus extend this theorem to DNNs. We design a new network with small generalization error, the deep operator network (DeepONet), which consists of a DNN for encoding the discrete input function space (branch net) and another DNN for encoding the domain of the output functions (trunk net). We demonstrate that DeepONet can learn various explicit operators, such as integrals and fractional Laplacians, as well as implicit operators that represent deterministic and stochastic differential equations. We study different formulations of the input function space and its effect on the generalization error for 16 different diverse applications. Neural networks are known as universal approximators of continuous functions, but they can also approximate any mathematical operator (mapping a function to another function), which is an important capability for complex systems such as robotics control. A new deep neural network called DeepONet can lean various mathematical operators with small generalization error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tizzy完成签到,获得积分10
刚刚
刚刚
Da完成签到,获得积分10
刚刚
在水一方应助尘封雪采纳,获得10
刚刚
刚刚
hancahngxiao发布了新的文献求助10
1秒前
1秒前
烟花应助wjw采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得100
2秒前
loststarts应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
孙福禄应助科研通管家采纳,获得10
2秒前
2秒前
李健应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
所所应助可与采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
5430应助科研通管家采纳,获得20
3秒前
烟花应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
谢许杯商应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
Alin应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
5430应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
4秒前
4秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014