Edge Intelligent Joint Optimization for Lifetime and Latency in Large-Scale Cyber–Physical Systems

计算机科学 信息物理系统 可靠性(半导体) 能源消耗 分布式计算 延迟(音频) 实时计算 生态学 量子力学 电信 生物 操作系统 物理 功率(物理)
作者
Kun Cao,Yangguang Cui,Zhiquan Liu,Wuzheng Tan,Jian Weng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (22): 22267-22279 被引量:26
标识
DOI:10.1109/jiot.2021.3102421
摘要

In recent years, the exploration on large-scale cyber–physical systems (CPSs) has become a fertile research field of significant impact. Large-scale CPS applications cover not only manufacturing and production areas but also daily living domains. Traditional solutions dedicated for large-scale CPSs mainly concentrate on the service latency or reliability optimization, but neglect the resultant negative impact on system lifetime. In this article, we conduct the first study on jointly optimizing the service latency and system lifetime subject to the constraints of reliability, energy consumption, and schedulability for large-scale CPSs. We propose an edge intelligent solution composed of offline and online phases. At the offline phase, the long short-term memory (LSTM) technique is leveraged to predict task offloading rates at individual user groups. Afterward, the multiobjective evolutionary algorithm with dual local search (DLS-MOEA) is exploited to determine optimal system static settings of computation offloading mapping and task replication number. At the online phase, an affinity-driven scheme incurring minimal system dynamic overheads is designed to deal with the inherent mobility of terminal users. We also build an algorithm validation platform upon which extensive simulation experiments are carried out. Experimental results show that our offline and online schemes outperform the state-of-the-art benchmarking methods by 27.1% and 43.5%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助大方的菠萝采纳,获得10
刚刚
1秒前
张祥芸发布了新的文献求助10
2秒前
5秒前
及禾应助rh1006采纳,获得10
5秒前
5秒前
jesi完成签到,获得积分10
6秒前
无花果应助韵寒禾香采纳,获得10
7秒前
zy完成签到,获得积分10
7秒前
8秒前
xfyxxh完成签到,获得积分10
8秒前
水清木华完成签到,获得积分10
9秒前
小妮子发布了新的文献求助10
10秒前
Xiaoxiao应助春天先生采纳,获得10
11秒前
12秒前
笨笨山芙发布了新的文献求助10
14秒前
ll应助wmq采纳,获得10
14秒前
渊思发布了新的文献求助10
16秒前
小虎应助方俊驰采纳,获得10
17秒前
daisy发布了新的文献求助10
17秒前
风清扬发布了新的文献求助10
17秒前
18秒前
19秒前
fang完成签到,获得积分10
20秒前
深情安青应助顺利狗采纳,获得10
22秒前
lee完成签到,获得积分10
23秒前
忧郁凌波发布了新的文献求助10
24秒前
24秒前
zy发布了新的文献求助10
24秒前
害羞的黄蜂关注了科研通微信公众号
30秒前
白兰鸽完成签到,获得积分10
31秒前
31秒前
33秒前
33秒前
33秒前
今后应助外向的飞雪采纳,获得10
34秒前
科研通AI5应助阳光香水采纳,获得10
36秒前
二三发布了新的文献求助10
37秒前
WoeL.Aug.11完成签到 ,获得积分10
37秒前
顺利狗发布了新的文献求助10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343