Edge Intelligent Joint Optimization for Lifetime and Latency in Large-Scale Cyber–Physical Systems

计算机科学 信息物理系统 可靠性(半导体) 能源消耗 分布式计算 延迟(音频) 实时计算 生态学 量子力学 电信 生物 操作系统 物理 功率(物理)
作者
Kun Cao,Yangguang Cui,Zhiquan Liu,Wuzheng Tan,Jian Weng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (22): 22267-22279 被引量:26
标识
DOI:10.1109/jiot.2021.3102421
摘要

In recent years, the exploration on large-scale cyber–physical systems (CPSs) has become a fertile research field of significant impact. Large-scale CPS applications cover not only manufacturing and production areas but also daily living domains. Traditional solutions dedicated for large-scale CPSs mainly concentrate on the service latency or reliability optimization, but neglect the resultant negative impact on system lifetime. In this article, we conduct the first study on jointly optimizing the service latency and system lifetime subject to the constraints of reliability, energy consumption, and schedulability for large-scale CPSs. We propose an edge intelligent solution composed of offline and online phases. At the offline phase, the long short-term memory (LSTM) technique is leveraged to predict task offloading rates at individual user groups. Afterward, the multiobjective evolutionary algorithm with dual local search (DLS-MOEA) is exploited to determine optimal system static settings of computation offloading mapping and task replication number. At the online phase, an affinity-driven scheme incurring minimal system dynamic overheads is designed to deal with the inherent mobility of terminal users. We also build an algorithm validation platform upon which extensive simulation experiments are carried out. Experimental results show that our offline and online schemes outperform the state-of-the-art benchmarking methods by 27.1% and 43.5%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得40
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
刚刚
只A不B应助科研通管家采纳,获得30
刚刚
刚刚
SYanan完成签到 ,获得积分10
1秒前
Owen应助大方嵩采纳,获得10
1秒前
2秒前
2秒前
2秒前
耍酷花卷发布了新的文献求助10
2秒前
孟陬十一完成签到,获得积分10
3秒前
3秒前
搞怪的凡蕾完成签到,获得积分10
4秒前
5秒前
5秒前
万能图书馆应助刘星星采纳,获得10
6秒前
Ting完成签到 ,获得积分10
6秒前
6秒前
SciGPT应助希夷采纳,获得10
6秒前
6秒前
调皮黑猫完成签到,获得积分10
6秒前
6秒前
Sunny完成签到,获得积分10
6秒前
7秒前
应作如是观完成签到,获得积分10
7秒前
聪聪great完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
晓军驳回了1ssd应助
7秒前
7秒前
啊哈哈哈完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
jxcandice发布了新的文献求助10
9秒前
旺德福完成签到 ,获得积分10
9秒前
kevin完成签到,获得积分10
9秒前
naomi完成签到 ,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762