Edge Intelligent Joint Optimization for Lifetime and Latency in Large-Scale Cyber–Physical Systems

计算机科学 信息物理系统 可靠性(半导体) 能源消耗 分布式计算 延迟(音频) 实时计算 生态学 量子力学 电信 生物 操作系统 物理 功率(物理)
作者
Kun Cao,Yangguang Cui,Zhiquan Liu,Wuzheng Tan,Jian Weng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (22): 22267-22279 被引量:26
标识
DOI:10.1109/jiot.2021.3102421
摘要

In recent years, the exploration on large-scale cyber–physical systems (CPSs) has become a fertile research field of significant impact. Large-scale CPS applications cover not only manufacturing and production areas but also daily living domains. Traditional solutions dedicated for large-scale CPSs mainly concentrate on the service latency or reliability optimization, but neglect the resultant negative impact on system lifetime. In this article, we conduct the first study on jointly optimizing the service latency and system lifetime subject to the constraints of reliability, energy consumption, and schedulability for large-scale CPSs. We propose an edge intelligent solution composed of offline and online phases. At the offline phase, the long short-term memory (LSTM) technique is leveraged to predict task offloading rates at individual user groups. Afterward, the multiobjective evolutionary algorithm with dual local search (DLS-MOEA) is exploited to determine optimal system static settings of computation offloading mapping and task replication number. At the online phase, an affinity-driven scheme incurring minimal system dynamic overheads is designed to deal with the inherent mobility of terminal users. We also build an algorithm validation platform upon which extensive simulation experiments are carried out. Experimental results show that our offline and online schemes outperform the state-of-the-art benchmarking methods by 27.1% and 43.5%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芝意CHEAE完成签到 ,获得积分10
刚刚
1秒前
潇洒的紫易完成签到,获得积分10
2秒前
2秒前
Yuri发布了新的文献求助10
2秒前
大方的契完成签到,获得积分10
3秒前
4秒前
明天见发布了新的文献求助10
5秒前
踏实语海完成签到,获得积分10
5秒前
yan123完成签到,获得积分10
5秒前
shin0324发布了新的文献求助10
6秒前
赘婿应助与一人同游采纳,获得10
6秒前
虚幻诗柳完成签到,获得积分10
9秒前
大方的契发布了新的文献求助10
11秒前
changping应助come采纳,获得100
11秒前
11秒前
luozejun完成签到,获得积分10
13秒前
酷波er应助李陈采纳,获得10
14秒前
Lucas应助宋贺贺采纳,获得10
15秒前
哈哈环完成签到 ,获得积分10
15秒前
15秒前
qnd关注了科研通微信公众号
15秒前
gqq完成签到,获得积分10
16秒前
ZJFL完成签到,获得积分10
17秒前
17秒前
18秒前
唯旧发布了新的文献求助10
18秒前
12345完成签到,获得积分10
18秒前
Yuri完成签到,获得积分10
19秒前
20秒前
20秒前
rumengzhuo完成签到,获得积分10
20秒前
21秒前
鳗鱼不尤完成签到,获得积分10
21秒前
充电宝应助可爱丹彤采纳,获得10
21秒前
爆学的狗发布了新的文献求助10
22秒前
绮山发布了新的文献求助10
23秒前
23秒前
23秒前
斯文败类应助tgd采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305017
求助须知:如何正确求助?哪些是违规求助? 4451211
关于积分的说明 13851392
捐赠科研通 4338545
什么是DOI,文献DOI怎么找? 2381993
邀请新用户注册赠送积分活动 1377139
关于科研通互助平台的介绍 1344501