Understanding plant responses to drought — from genes to the whole plant

生物 适应(眼睛) 耐旱性 非生物胁迫 植物进化 脱落酸 非生物成分 生态学 生物技术 基因 干旱胁迫 植物 拟南芥 基因组 遗传学 神经科学
作者
M. M. Chaves,João Marôco,J. S. Pereira
出处
期刊:Functional Plant Biology [CSIRO Publishing]
卷期号:30 (3): 239-239 被引量:2966
标识
DOI:10.1071/fp02076
摘要

In the last decade, our understanding of the processes underlying plant response to drought, at the molecular and whole-plant levels, has rapidly progressed. Here, we review that progress. We draw attention to the perception and signalling processes (chemical and hydraulic) of water deficits. Knowledge of these processes is essential for a holistic understanding of plant resistance to stress, which is needed to improve crop management and breeding techniques. Hundreds of genes that are induced under drought have been identified. A range of tools, from gene expression patterns to the use of transgenic plants, is being used to study the specific function of these genes and their role in plant acclimation or adaptation to water deficit. However, because plant responses to stress are complex, the functions of many of the genes are still unknown. Many of the traits that explain plant adaptation to drought - such as phenology, root size and depth, hydraulic conductivity and the storage of reserves - are those associated with plant development and structure, and are constitutive rather than stress induced. But a large part of plant resistance to drought is the ability to get rid of excess radiation, a concomitant stress under natural conditions. The nature of the mechanisms responsible for leaf photoprotection, especially those related to thermal dissipation, and oxidative stress are being actively researched. The new tools that operate at molecular, plant and ecosystem levels are revolutionising our understanding of plant response to drought, and our ability to monitor it. Techniques such as genome-wide tools, proteomics, stable isotopes and thermal or fluorescence imaging may allow the genotype-phenotype gap to be bridged, which is essential for faster progress in stress biology research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年年发布了新的文献求助10
刚刚
1+1应助peopleeeee采纳,获得20
刚刚
1秒前
桐桐应助王治豪采纳,获得10
2秒前
sea发布了新的文献求助10
2秒前
李健应助连冷安采纳,获得10
2秒前
没有昵称完成签到,获得积分10
3秒前
蒋溶完成签到,获得积分10
3秒前
NexusExplorer应助等风吹采纳,获得10
3秒前
葡萄成熟完成签到,获得积分10
3秒前
mkihvgik完成签到,获得积分10
4秒前
sjr完成签到,获得积分10
4秒前
顾矜应助显隐采纳,获得10
4秒前
5秒前
尔蝶发布了新的文献求助10
5秒前
俞璐完成签到,获得积分10
5秒前
一只生物狗完成签到,获得积分10
6秒前
轩辕沛柔完成签到,获得积分10
6秒前
wangyun发布了新的文献求助10
7秒前
忧郁的夏槐完成签到,获得积分10
8秒前
8秒前
9秒前
黎冰颜完成签到,获得积分20
10秒前
10秒前
气味发布了新的文献求助10
11秒前
Xiaoxiannv完成签到,获得积分10
12秒前
清秀千兰发布了新的文献求助10
12秒前
852应助尔蝶采纳,获得10
12秒前
所所应助忧郁的夏槐采纳,获得50
12秒前
saber完成签到,获得积分10
13秒前
黎冰颜发布了新的文献求助10
13秒前
小6s完成签到,获得积分10
13秒前
15秒前
15秒前
庆爷发布了新的文献求助200
15秒前
舒心的紫雪完成签到 ,获得积分10
15秒前
小6s发布了新的文献求助10
16秒前
娃哈哈发布了新的文献求助10
17秒前
18秒前
CodeCraft应助光亮的灭绝采纳,获得10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755494
求助须知:如何正确求助?哪些是违规求助? 3298655
关于积分的说明 10106495
捐赠科研通 3013264
什么是DOI,文献DOI怎么找? 1655069
邀请新用户注册赠送积分活动 789453
科研通“疑难数据库(出版商)”最低求助积分说明 753286