Effects of an integrated concept mapping and web-based problem-solving approach on students' learning achievements, perceptions and cognitive loads

计算机科学 概念图 感知 认知 任务(项目管理) 过程(计算) Web应用程序 认知负荷 芯(光纤) 数学教育 人工智能 万维网 心理学 工程类 神经科学 操作系统 系统工程 电信
作者
Gwo‐Jen Hwang,Fan-Ray Kuo,Nian‐Shing Chen,Hsueh-Ju Ho
出处
期刊:Computers & education [Elsevier]
卷期号:71: 77-86 被引量:122
标识
DOI:10.1016/j.compedu.2013.09.013
摘要

Although students could effectively search for web data with proper keywords and select web pages related to the studied core issue, however summarizing or organizing the retrieved information remains a difficult task for them. Concept mapping is known to be an effective knowledge construction tool for helping learners organize important concepts related to a core issue. To address the problem, an integrated concept mapping and web-based problem-solving environment, CM-Quest, has been developed; moreover, an experiment has been conducted to evaluate the effectiveness of the approach on students' learning performance, learning satisfaction and cognitive load in an elementary school social studies course. The results show that the concept map-integrated approach can significantly enhance the students' web-based problem-solving performance, although the students showed lower degrees of technology acceptance and learning satisfaction in comparison with the conventional web-based problem-solving approach. Moreover, it is found that the students in the concept mapping group revealed higher cognitive loads than those in the control group, which could be the factor contributing to the lower technology acceptance degree and learning satisfaction. As a consequence, it is concluded that the integrated concept mapping and web-based problem-solving approach is helpful to students in guiding them to learn in a more effective way. On the other hand, it remains an open issue to find a suitable way of integrating concept maps into the learning process without introducing too much extra cognitive load so as to promote students' acceptance degree of using technology for better learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Mry完成签到,获得积分10
1秒前
年轻半雪完成签到,获得积分10
2秒前
丹丹发布了新的文献求助10
3秒前
4秒前
zhuiyu完成签到 ,获得积分10
5秒前
7秒前
RebeccaHe应助晓山青采纳,获得10
8秒前
葶ting完成签到 ,获得积分10
9秒前
熊熊面包应助李李采纳,获得10
9秒前
喜悦香薇完成签到,获得积分10
10秒前
11秒前
wufang发布了新的文献求助10
11秒前
11秒前
13秒前
安天祈关注了科研通微信公众号
14秒前
小蘑菇应助贪玩的老虎采纳,获得10
14秒前
黎黎发布了新的文献求助30
15秒前
18秒前
BKP发布了新的文献求助10
19秒前
20秒前
ding应助露露采纳,获得10
20秒前
20秒前
撒个人应助自觉的忆霜采纳,获得10
21秒前
可爱的函函应助wufang采纳,获得10
21秒前
无辜忆寒完成签到,获得积分10
23秒前
思婷老公发布了新的文献求助10
23秒前
25秒前
25秒前
26秒前
诸沧海发布了新的文献求助10
26秒前
不配.应助科研通管家采纳,获得20
30秒前
30秒前
在水一方应助科研通管家采纳,获得10
30秒前
Rita发布了新的文献求助10
30秒前
研友_VZG7GZ应助科研通管家采纳,获得10
30秒前
Singularity应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124648
求助须知:如何正确求助?哪些是违规求助? 2774953
关于积分的说明 7724821
捐赠科研通 2430484
什么是DOI,文献DOI怎么找? 1291144
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323