The Use of Deep Learning-Based Gesture Interactive Robot in the Treatment of Autistic Children Under Music Perception Education

感知 手势 心理学 脑电图 自闭症 音乐感知 人工智能 认知心理学 计算机科学 发展心理学 精神科 神经科学
作者
Yiyao Zhang,Chao Zhang,Lei Cheng,Mingwei Qi
出处
期刊:Frontiers in Psychology [Frontiers Media SA]
卷期号:13 被引量:9
标识
DOI:10.3389/fpsyg.2022.762701
摘要

The purpose of this study was to apply deep learning to music perception education. Music perception therapy for autistic children using gesture interactive robots based on the concept of educational psychology and deep learning technology is proposed. First, the experimental problems are defined and explained based on the relevant theories of pedagogy. Next, gesture interactive robots and music perception education classrooms are studied based on recurrent neural networks (RNNs). Then, autistic children are treated by music perception, and an electroencephalogram (EEG) is used to collect the music perception effect and disease diagnosis results of children. Due to significant advantages of signal feature extraction and classification, RNN is used to analyze the EEG of autistic children receiving different music perception treatments to improve classification accuracy. The experimental results are as follows. The analysis of EEG signals proves that different people have different perceptions of music, but this difference fluctuates in a certain range. The classification accuracy of the designed model is about 72-94%, and the average classification accuracy is about 85%. The average accuracy of the model for EEG classification of autistic children is 85%, and that of healthy children is 84%. The test results with similar models also prove the excellent performance of the design model. This exploration provides a reference for applying the artificial intelligence (AI) technology in music perception education to diagnose and treat autistic children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒柒完成签到,获得积分10
刚刚
Jane完成签到 ,获得积分10
1秒前
1秒前
不想看文献完成签到,获得积分10
3秒前
龚成明完成签到,获得积分10
3秒前
无限毛豆发布了新的文献求助10
6秒前
8秒前
8秒前
9秒前
9秒前
10秒前
安琪琪发布了新的文献求助10
12秒前
sa完成签到,获得积分10
13秒前
福尔摩柯完成签到,获得积分10
14秒前
专注学习发布了新的文献求助10
14秒前
111完成签到 ,获得积分10
15秒前
3333完成签到,获得积分10
17秒前
Jerry完成签到,获得积分10
19秒前
21秒前
烟花应助忘忧草采纳,获得10
21秒前
喜悦芝麻完成签到 ,获得积分10
22秒前
完美世界应助HHHH采纳,获得10
22秒前
22秒前
24秒前
小学猹完成签到,获得积分10
24秒前
25秒前
GRATE完成签到 ,获得积分10
25秒前
yy完成签到 ,获得积分10
25秒前
de完成签到,获得积分10
26秒前
26秒前
27秒前
28秒前
JamesPei应助谷雨下采纳,获得10
28秒前
Wang发布了新的文献求助10
28秒前
聪仔应助轻松的蜜粉采纳,获得50
28秒前
28秒前
30秒前
3333发布了新的文献求助10
31秒前
俭朴迎波发布了新的文献求助10
31秒前
大肥猫发布了新的文献求助10
32秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214006
求助须知:如何正确求助?哪些是违规求助? 2862659
关于积分的说明 8134955
捐赠科研通 2528960
什么是DOI,文献DOI怎么找? 1363072
科研通“疑难数据库(出版商)”最低求助积分说明 643752
邀请新用户注册赠送积分活动 616184