作者
Yorai Ron,Amnon Dafni-Merom,Noam Saadon-Grosman,Moshe Roseman,Uri Elias,Shahar Arzy
摘要
The cognitive system applies categorical thinking to facilitate perception of the rich environment around us. In person cognition, research has focused on the roles of gender, race, age, or appearance in social categorical thinking. Here we investigated how narrative roles, as portrayed by different cinematic characters, are categorized in the neurocognitive system. Under functional MRI, 17 human participants (7 females) were asked to make different judgments regarding personality traits of 16 renowned cinematic characters representing four roles: hero, sidekick, mentor, and villain. Classification analysis showed a brain network, comprising the dorsal medial prefrontal cortex, the precuneus and the temporoparietal junction bilaterally, and the left occipital face area (OFA), to discriminate among the four roles. No such classification was found between other individual attributes including age or the associated film. Moreover, regions overlapping the default mode network (DMN) were found to better discriminate between roles, rather than the individual characters, while the OFA was found to better discriminate between individuals. These results demonstrate the inherent role of roles in person cognition, and suggest an intimate relation between roles categorization and self-referential activity. SIGNIFICANCE STATEMENT Social categorization, the assignment of different people in our social network to subgroups, is a powerful strategy in social cognition. How is this managed by the brain? We provide evidence that different characters from different stories, representing similar roles in their corresponding narrative, elicit similar brain activation patterns, as revealed by functional MRI. Unlike previous studies of social categorization, these brain activations were similar to those elicited by social cognition rather than face processing, and included regions at the prefrontal cortex, the precuneus, and the temporoparietal junction. The identified brain network significantly overlapped the default mode network. We suggest that social categorization by roles is fundamental to the cognitive system, relying on brain regions related to social cognition.