Deep Learning–based Outcome Prediction in Progressive Fibrotic Lung Disease Using High-Resolution Computed Tomography

医学 放射科 高分辨率计算机断层扫描 结果(博弈论) 肺病 断层摄影术 内科学 计算机断层摄影术 数学 数理经济学
作者
Simon Walsh,John A. Mackintosh,Lucio Calandriello,Mario Silva,Nicola Sverzellati,Anna Rita Larici,Stephen M. Humphries,David A. Lynch,Helen E. Jo,Ian Glaspole,Christopher Grainge,Nicole Goh,Peter Hopkins,Yuben Moodley,Paul N. Reynolds,Christopher Zappala,Gregory J. Keir,Wendy A. Cooper,Annabelle Mahar,Samantha Ellis
出处
期刊:American Journal of Respiratory and Critical Care Medicine [American Thoracic Society]
卷期号:206 (7): 883-891 被引量:105
标识
DOI:10.1164/rccm.202112-2684oc
摘要

Rationale: Reliable outcome prediction in patients with fibrotic lung disease using baseline high-resolution computed tomography (HRCT) data remains challenging. Objectives: To evaluate the prognostic accuracy of a deep learning algorithm (SOFIA [Systematic Objective Fibrotic Imaging Analysis Algorithm]), trained and validated in the identification of usual interstitial pneumonia (UIP)-like features on HRCT (UIP probability), in a large cohort of well-characterized patients with progressive fibrotic lung disease drawn from a national registry. Methods: SOFIA and radiologist UIP probabilities were converted to Prospective Investigation of Pulmonary Embolism Diagnosis (PIOPED)-based UIP probability categories (UIP not included in the differential, 0-4%; low probability of UIP, 5-29%; intermediate probability of UIP, 30-69%; high probability of UIP, 70-94%; and pathognomonic for UIP, 95-100%), and their prognostic utility was assessed using Cox proportional hazards modeling. Measurements and Main Results: In multivariable analysis adjusting for age, sex, guideline-based radiologic diagnosis, anddisease severity (using total interstitial lung disease [ILD] extent on HRCT, percent predicted FVC, DlCO, or the composite physiologic index), only SOFIA UIP probability PIOPED categories predicted survival. SOFIA-PIOPED UIP probability categories remained prognostically significant in patients considered indeterminate (n = 83) by expert radiologist consensus (hazard ratio, 1.73; P < 0.0001; 95% confidence interval, 1.40-2.14). In patients undergoing surgical lung biopsy (n = 86), after adjusting for guideline-based histologic pattern and total ILD extent on HRCT, only SOFIA-PIOPED probabilities were predictive of mortality (hazard ratio, 1.75; P < 0.0001; 95% confidence interval, 1.37-2.25). Conclusions: Deep learning-based UIP probability on HRCT provides enhanced outcome prediction in patients with progressive fibrotic lung disease when compared with expert radiologist evaluation or guideline-based histologic pattern. In principle, this tool may be useful in multidisciplinary characterization of fibrotic lung disease. The utility of this technology as a decision support system when ILD expertise is unavailable requires further investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮数据线完成签到,获得积分10
刚刚
1秒前
壮观乘云完成签到,获得积分20
2秒前
焦焦发布了新的文献求助80
2秒前
小江不饿发布了新的文献求助10
3秒前
crx发布了新的文献求助10
3秒前
4秒前
小迪完成签到,获得积分10
5秒前
我是老大应助OnlyHarbour采纳,获得10
7秒前
zh_li完成签到,获得积分10
8秒前
cheng完成签到,获得积分10
8秒前
8秒前
NN应助李7采纳,获得20
8秒前
9秒前
pp完成签到,获得积分10
10秒前
浮游应助壮观乘云采纳,获得10
10秒前
jun完成签到 ,获得积分10
10秒前
10秒前
10秒前
嗯嗯应助王之争霸采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
海南发布了新的文献求助10
13秒前
晨晨发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
14秒前
15秒前
缓慢尔岚发布了新的文献求助10
15秒前
善良随阴完成签到,获得积分10
15秒前
15秒前
15秒前
奶白的雪子完成签到,获得积分10
15秒前
星辰大海应助阿依咕噜采纳,获得10
17秒前
香蕉觅云应助DG采纳,获得10
17秒前
睡觉了完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
Y_Y完成签到,获得积分10
18秒前
zorro3574发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131