血清素
抗焦虑药
代谢物
化学
高架加迷宫
药理学
单胺氧化酶
单胺类神经递质
体内
内科学
内分泌学
生物化学
医学
生物
受体
焦虑
生物技术
酶
精神科
作者
Khurshid Jalal,Faisal Khan,Shazia Nawaz,Rushda Afroz,Kanwal Iqbal Khan,Sadia Basharat Ali,Liang Hao,Saeed Ahmad Khan,Mohsin Kazi,Reaz Uddin,Darakhshan Jabeen Haleem
标识
DOI:10.1016/j.biopha.2022.113235
摘要
L-lysine (L-lys) had long been comprehended as an essential amino acid for humans. There were reports that the absence or inadequate availability of L-lys in the diet may lead to mental and physical impairments. The present study was designed to explore the effects of L-lys on body weight changes, cumulative food intake, anxiety-like behavior and pain perception in rats. 5-Hydroxytryptamine (5-HT, serotonin) metabolism, and tryptophan (Trp) levels in the midbrain (MB), hippocampus (HP), and prefrontal cortex (PFC) were also determined. Animals were treated with L-lys in doses of 0.5 g/kg and 1 g/kg for 20 days and behavioral studies were performed on day 1st and day 20th. After monitoring behaviors on day 20th, animals were killed to collect the serum and brain regions MB, HP and PFC. 5-HT metabolism and Trp levels were determined by HPLC-EC. The treatment produce no effect on food intakes but body weights were reduced. 20 days administration of L-lys produced an anxiolytic effect and increased exploratory activity on day 1st. Repeated administration of L-lys increased 5-HT levels in the PFC and HP. 5-Hydroxyindoleacetic acid (5-HIAA), the metabolite of 5-HT, decreased in the HP. Trp, the precourser of 5-HT, decreased in the PFC. Results suggested a decrease in 5-HT degredation in enhancing 5-HT levels. Results of in-silico analysis showed that lysine had a potential binding affinity for MAO (monoamine oxidase) A and B with an energy of (-4.8 kcal/mol and -5.3 kcal/mol) respectively. The molecular dynamic simulation study revealed the stability of L-lys after 10 ns for each protein. Conclusively, the present study showed that L-lys produced an anxiolytic effect and reduced body weight. These beneficial effects were associated with an increase in 5-HT levels in the PFC and HP. In-silico analysis suggested that 5-HT increase were due to the binding of L-lys with MAOs resulting in an inhibition of the degradation of monoamine.
科研通智能强力驱动
Strongly Powered by AbleSci AI