Quantifying the electrochemical active site density of precious metal-free catalysts in situ in fuel cells

催化作用 电化学 材料科学 电解质 阴极 降级(电信) 化学工程 质子交换膜燃料电池 贵金属 电极 化学 有机化学 计算机科学 电信 工程类 物理化学
作者
Rifael Z. Snitkoff‐Sol,Ariel Friedman,Hilah C. Honig,Yan Yurko,Alisa Kozhushner,Michael J. Zachman,Piotr Zelenay,Alan M. Bond,Lior Elbaz
出处
期刊:Nature Catalysis [Springer Nature]
卷期号:5 (2): 163-170 被引量:108
标识
DOI:10.1038/s41929-022-00748-9
摘要

Advances in the development of precious-group metal-free (PGM-free) catalysts for the oxygen reduction reaction (ORR) in fuel cell cathodes have produced active catalysts that reduce the performance gap to the incumbent Pt-based materials. However, utilization of state-of-the-art PGM-free catalysts for commercial applications is currently impeded by their relatively low durability. Methods designed to study catalyst degradation in the operation of fuel cells are therefore critical for understanding durability issues and, ultimately, their solutions. Here we report the use of Fourier-transform alternating current voltammetry as an electrochemical method for accurate quantification of the electrochemically active site density of PGM-free cathode catalysts, and to follow their degradation in situ during the operation of polymer electrolyte fuel cells. Using this method, we were able to quantify the electrochemical active site density, which will enable the elucidation of degradation mechanisms of PGM-free ORR catalysts in situ in fuel cells. The implementation of precious metal-free catalysts for the oxygen reduction reaction in fuel cells requires techniques that enable the study of catalyst degradation during operation. Now, an electrochemical method to quantify the density of electrochemically active sites in precious metal-free fuel cell catalysts under in situ conditions is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY发布了新的文献求助10
刚刚
刚刚
huanhuan完成签到,获得积分10
1秒前
小刘不笨完成签到,获得积分10
1秒前
吕绪特完成签到 ,获得积分10
1秒前
2秒前
愉快的夏菡完成签到,获得积分10
2秒前
研友_gnv61n完成签到,获得积分10
2秒前
zmy完成签到,获得积分10
2秒前
小蘑菇应助守约采纳,获得10
3秒前
3秒前
空白发布了新的文献求助10
4秒前
buno应助721采纳,获得20
4秒前
石阶上完成签到 ,获得积分10
4秒前
du完成签到 ,获得积分10
4秒前
Xu完成签到,获得积分10
5秒前
mmmm完成签到,获得积分10
5秒前
5秒前
情怀应助YY采纳,获得10
5秒前
懦弱的安珊完成签到,获得积分10
6秒前
Akim应助xiaokezhang采纳,获得10
6秒前
6秒前
柠木完成签到 ,获得积分10
6秒前
系统提示发布了新的文献求助10
6秒前
marigold完成签到,获得积分10
6秒前
Gaoge完成签到,获得积分10
7秒前
愉快的无招完成签到,获得积分10
7秒前
7秒前
HEIKU应助习习采纳,获得10
8秒前
8秒前
8秒前
8秒前
合适苗条完成签到,获得积分10
8秒前
Zn应助开水泡饼采纳,获得10
8秒前
科目三应助Liu采纳,获得10
9秒前
9秒前
eating完成签到,获得积分10
9秒前
李双艳完成签到,获得积分10
9秒前
英姑应助科研混子采纳,获得10
9秒前
li完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678