Divergent and Convergent Imaging Markers Between Bipolar and Unipolar Depression Based on Machine Learning

认知 萧条(经济学) 神经科学 同步(交流) 公制(单位) 双相情感障碍 心理学 人工智能 机器学习 计算机科学 运营管理 计算机网络 频道(广播) 宏观经济学 经济
作者
Huifeng Zhang,Zhen Zhou,Lei Ding,Chuangxin Wu,Meihui Qiu,Yueqi Huang,Feng Jin,Ting Shen,Yao Yang,Li‐Ming Hsu,Jinhong Wang,Han Zhang,Dinggang Shen,Daihui Peng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (8): 4100-4110 被引量:11
标识
DOI:10.1109/jbhi.2022.3166826
摘要

Distinguishing bipolar depression (BD) from unipolar depression (UD) based on symptoms only is challenging. Brain functional connectivity (FC), especially dynamic FC, has emerged as a promising approach to identify possible imaging markers for differentiating BD from UD. However, most of such studies utilized conventional FC and group-level statistical comparisons, which may not be sensitive enough to quantify subtle changes in the FC dynamics between BD and UD. In this paper, we present a more effective individualized differentiation model based on machine learning and the whole-brain "high-order functional connectivity (HOFC)" network. The HOFC, capturing temporal synchronization among the dynamic FC time series, a more complex "chronnectome" metric compared to the conventional FC, was used to classify 52 BD, 73 UD, and 76 healthycontrols (HC). We achieved a satisfactory accuracy (70.40%) in BD vs. UD differentiation. The resultant contributing features revealed the involvement of the coordinated flexible interactions among sensory (e.g., olfaction, vision, and audition), motor, and cognitive systems. Despite sharing common chronnectome of cognitive and affective impairments, BD and UD also demonstrated unique dynamic FC synchronization patterns. UD is more associated with abnormal visual-somatomotor inter-network connections, while BD is more related to impaired ventral attention-frontoparietal inter-network connections. Moreover, we found that the illness duration modulated the BD vs. UD separation, with the differentiation performance hampered by the secondary disease effects. Our findings suggest that BD and UD may have divergent and convergent neural substrates, which further expand our knowledge of the two different mental disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
xizhang完成签到 ,获得积分10
2秒前
Eman完成签到,获得积分10
2秒前
2秒前
SevenKing完成签到,获得积分20
2秒前
薇薇辣完成签到 ,获得积分10
2秒前
3秒前
妙妙完成签到,获得积分10
3秒前
3秒前
SASA发布了新的文献求助10
4秒前
Fairy完成签到,获得积分10
4秒前
4秒前
臧为完成签到,获得积分10
4秒前
坚强的曼雁完成签到,获得积分10
5秒前
完美世界应助行道吉安采纳,获得30
5秒前
不敢自称科研人完成签到,获得积分10
5秒前
不对也没错完成签到,获得积分10
5秒前
ou完成签到,获得积分10
6秒前
在水一方应助超帅的从菡采纳,获得10
7秒前
11发布了新的文献求助10
7秒前
www完成签到 ,获得积分10
7秒前
科研通AI5应助Makarena采纳,获得10
8秒前
梦槐完成签到,获得积分10
8秒前
mwwbhu完成签到,获得积分20
9秒前
9秒前
ou发布了新的文献求助10
9秒前
9秒前
笑羽完成签到,获得积分0
9秒前
君君完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
飞鸟完成签到,获得积分10
10秒前
小巧的可仁完成签到 ,获得积分10
10秒前
nature完成签到,获得积分10
10秒前
荡南桥发布了新的文献求助10
10秒前
专一的新之完成签到 ,获得积分10
10秒前
zuoyou完成签到,获得积分10
11秒前
默默的灯泡完成签到 ,获得积分10
11秒前
Itachi12138完成签到,获得积分10
12秒前
小白想吃面包完成签到,获得积分10
12秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666840
求助须知:如何正确求助?哪些是违规求助? 3225706
关于积分的说明 9764854
捐赠科研通 2935572
什么是DOI,文献DOI怎么找? 1607763
邀请新用户注册赠送积分活动 759353
科研通“疑难数据库(出版商)”最低求助积分说明 735287