膜
化学
烷基
生物物理学
荧光
细胞膜
分子
有机化学
生物化学
物理
量子力学
生物
作者
Chuangye Yao,Jiaqi Zuo,Penglei Wu,Jie Liu,Junjun Pan,Engao Zhu,Hui Feng,Kewei Zhang,Zhaosheng Qian
出处
期刊:Talanta
[Elsevier]
日期:2024-08-01
卷期号:275: 126105-126105
被引量:1
标识
DOI:10.1016/j.talanta.2024.126105
摘要
Long-term visualization of changes in plasma membrane dynamics during important physiological processes can provide intuitive and reliable information in a 4D mode. However, molecular tools that can visualize plasma membranes over extended periods are lacking due to the absence of effective design rules that can specifically track plasma membrane fluorescent dye molecules over time. Using plant plasma membranes as a model, we systematically investigated the effects of different alkyl chain lengths of FMR dye molecules on their performance in imaging plasma membranes. Our findings indicate that alkyl chain length can effectively regulate the permeability of dye molecules across plasma membranes. The study confirms that introducing medium-length alkyl chains improves the ability of dye molecules to target and anchor to plasma membranes, allowing for long-term imaging of plasma membranes. This provides useful design rules for creating dye molecules that enable long-term visualization of plasma membranes. Using the amphiphilic amino-styryl-pyridine fluorescent skeleton, we discovered that the inclusion of short alkyl chains facilitated rapid crossing of the plasma membrane by the dye molecules, resulting in staining of the cell nucleus and indicating improved cell permeability. Conversely, the inclusion of long alkyl chains hindered the crossing of the cell wall by the dye molecules, preventing staining of the cell membrane and demonstrating membrane impermeability to plant cells. The FMR dyes with medium-length alkyl chains rapidly crossed the cell wall, uniformly stained the cell membrane, and anchored to it for a long period without being transmembrane. This allowed for visualization and tracking of the morphological dynamics of the cell plasma membrane during water loss in a 4D mode. This suggests that the introduction of medium-length alkyl chains into amphiphilic fluorescent dyes can transform them from membrane-permeable fluorescent dyes to membrane-staining fluorescent dyes suitable for long-term imaging of the plasma membrane. In addition, we have successfully converted a membrane-impermeable fluorescent dye molecule into a membrane-staining fluorescent dye by introducing medium-length alkyl chains into the molecule. This molecular engineering of dye molecules with alkyl chains to regulate cell permeability provides a simple and effective design rule for long-term visualization of the plasma membrane, and a convenient and feasible means of chemical modification for efficient transmembrane transport of small molecule drugs.
科研通智能强力驱动
Strongly Powered by AbleSci AI