Attribute-Guided Cross-Modal Interaction and Enhancement for Audio-Visual Matching

计算机科学 匹配(统计) 水准点(测量) 特征(语言学) 情态动词 人工智能 嵌入 模式识别(心理学) 相似性(几何) 特征提取 图像(数学) 哲学 大地测量学 统计 化学 语言学 高分子化学 地理 数学
作者
Jiaxiang Wang,Aihua Zheng,Yan Yan,Ran He,Jin Tang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 4986-4998
标识
DOI:10.1109/tifs.2024.3388949
摘要

Audio-visual matching is an essential task that measures the correlation between audio clips and visual images. However, current methods rely solely on the joint embedding of global features from audio clips and face image pairs to learn semantic correlations. This approach overlooks the importance of high-confidence correlations and discrepancies of local subtle features, which are crucial for cross-modal matching. To address this issue, we propose a novel Attribute-guided Cross-modal Interaction and Enhancement Network (ACIENet), which employs multiple attributes to explore the associations of different key local subtle features. The ACIENet contains two novel modules: the Attribute-guided Interaction (AGI) module and the Attribute-guided Enhancement (AGE) module. The AGI module employs global feature alignment similarity to guide cross-modal local feature interactions, which enhances cross-modal association features for the same identity and expands cross-modal distinctive features for different identities. Additionally, the interactive features and original features are fused to ensure intra-class discriminability and inter-class correspondence. The AGE module captures subtle attribute-related features by using an attribute-driven network, thereby enhancing discrimination at the attribute level. Specifically, it strengthens the combined attribute-related features of gender and nationality. To prevent interference between multiple attribute features, we design a multi-attribute learning network as a parallel framework. Experiments conducted on a public benchmark dataset demonstrate the efficacy of the ACIENet method in different scenarios. Code and models are available at https://github.com/w1018979952/ACIENet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低凡桃完成签到,获得积分10
1秒前
小小蟋蟀完成签到,获得积分10
1秒前
秀丽思远完成签到,获得积分10
1秒前
科研通AI5应助糊涂的百川采纳,获得10
2秒前
弱水发布了新的文献求助10
2秒前
hippo发布了新的文献求助10
2秒前
苒苒完成签到,获得积分10
2秒前
烂漫饼干完成签到,获得积分10
2秒前
Akim应助失眠小猫咪采纳,获得10
2秒前
JamesPei应助123采纳,获得10
2秒前
3秒前
曹煜晗发布了新的文献求助10
3秒前
3秒前
大模型应助召唤兽采纳,获得10
3秒前
3秒前
某某某完成签到,获得积分10
4秒前
桐桐应助李不开你采纳,获得10
5秒前
5秒前
cjy完成签到,获得积分10
5秒前
5秒前
英姑应助仗炮由纪采纳,获得10
5秒前
王大敏给王大敏的求助进行了留言
6秒前
mingxuan完成签到,获得积分10
6秒前
殷勤的咖啡完成签到,获得积分10
7秒前
希望天下0贩的0应助11采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
今后应助zhao采纳,获得10
7秒前
英俊的铭应助su采纳,获得10
8秒前
8秒前
9秒前
夏夜微凉完成签到,获得积分10
10秒前
10秒前
10秒前
花花发布了新的文献求助20
10秒前
攒星星完成签到,获得积分10
10秒前
sugarballer完成签到,获得积分10
10秒前
11秒前
齐小妮完成签到,获得积分20
11秒前
卡卡卡卡卡卡完成签到,获得积分10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559