化学
二氢叶酸还原酶
光解
质谱法
紫外线
突变体
分子动力学
蛋白质结构
蛋白质动力学
辅因子
生物物理学
生物化学
光化学
色谱法
计算化学
酶
物理
生物
量子力学
基因
作者
Pan Luo,Zheyi Liu,Can Lai,Zhixiong Jin,Mengdie Wang,Heng Zhao,Yu Liu,Weiqing Zhang,Xingan Wang,Chunlei Xiao,Xueming Yang,Fangjun Wang
摘要
How mutations impact protein stability and structure dynamics is crucial for understanding the pathological process and rational drug design. Herein, we establish a time-resolved native mass spectrometry (TR-nMS) platform via a rapid-mixing capillary apparatus for monitoring the acid-initiated protein unfolding process. The molecular details in protein structure unfolding are further profiled by a 193 nm ultraviolet photodissociation (UVPD) analysis of the structure-informative photofragments. Compared with the wild-type dihydrofolate reductase (WT-DHFR), the M42T/H114R mutant (MT-DHFR) exhibits a significant stability decrease in TR-nMS characterization. UVPD comparisons of the unfolding intermediates and original DHFR forms indicate the special stabilization effect of cofactor NADPH on DHFR structure, and the M42T/H114R mutations lead to a significant decrease in NADPH-DHFR interactions, thus promoting the structure unfolding. Our study paves the way for probing the mutation-induced subtle changes in the stability and structure dynamics of drug targets.
科研通智能强力驱动
Strongly Powered by AbleSci AI