Transcriptomic analysis reveals the anti-cancer effect of gestational mesenchymal stem cell secretome

间充质干细胞 生物 Wnt信号通路 癌症研究 转录组 癌变 癌症干细胞 癌症 微泡 干细胞 细胞生物学 癌细胞 小RNA 信号转导 基因表达 生物化学 遗传学 基因
作者
Salvatore Vaiasicca,Gianmarco Melone,David W. James,Marcos Quintela,Jing Xiao,Seydou Yao,Richard H. Finnell,R. Steven Conlan,Lewis W. Francis,Bruna Corradetti
出处
期刊:Stem Cells Translational Medicine [Wiley]
卷期号:13 (7): 693-710
标识
DOI:10.1093/stcltm/szae024
摘要

Abstract The environment created during embryogenesis contributes to reducing aberrations that drive structural malformations and tumorigenesis. In this study, we investigate the anti-cancer effect of mesenchymal stem cells (MSCs) derived from 2 different gestational tissues, the amniotic fluid (AF) and the chorionic villi (CV), with emphasis on their secretome. Transcriptomic analysis was performed on patient-derived AF- and CV-MSCs collected during prenatal diagnosis and identified both mRNAs and lncRNAs, involved in tissue homeostasis and inhibiting biological processes associated with the etiology of aggressive cancers while regulating immune pathways shown to be important in chronic disorders. Secretome enrichment analysis also identified soluble moieties involved in target cell regulation, tissue homeostasis, and cancer cell inhibition through the highlighted Wnt, TNF, and TGF-β signaling pathways. Transcriptomic data were experimentally confirmed through in vitro assays, by evaluating the anti-cancer effect of the media conditioned by AF- and CV-MSCs and the exosomes derived from them on ovarian cancer cells, revealing inhibitory effects in 2D (by reducing cell viability and inducing apoptosis) and in 3D conditions (by negatively interfering with spheroid formation). These data provide molecular insights into the potential role of gestational tissues-derived MSCs as source of anti-cancer factors, paving the way for the development of therapeutics to create a pro-regenerative environment for tissue restoration following injury, disease, or against degenerative disorders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZHIXIANGWENG发布了新的文献求助10
1秒前
科研通AI5应助热心的飞风采纳,获得10
1秒前
脑洞疼应助ziyiziyi采纳,获得10
1秒前
虚心若烟发布了新的文献求助10
2秒前
Gorone发布了新的文献求助10
3秒前
SciGPT应助AutuMg采纳,获得10
3秒前
幽默的妍发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
曾经的秋寒完成签到,获得积分10
5秒前
5秒前
深情安青应助Wch采纳,获得10
6秒前
gcc应助柳叶小弯刀采纳,获得20
6秒前
6秒前
bkagyin应助刘明生采纳,获得10
7秒前
Xman完成签到,获得积分10
7秒前
搬石头发布了新的文献求助200
7秒前
8秒前
8秒前
ZHIXIANGWENG发布了新的文献求助10
8秒前
我是老大应助wzy采纳,获得10
8秒前
8秒前
xx发布了新的文献求助10
9秒前
谨慎枫叶发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
Angie完成签到,获得积分0
10秒前
火星上的青寒完成签到,获得积分10
11秒前
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
小飞七应助科研通管家采纳,获得10
11秒前
jin应助科研通管家采纳,获得20
11秒前
可靠盼旋完成签到,获得积分10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得30
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543565
求助须知:如何正确求助?哪些是违规求助? 3120838
关于积分的说明 9344680
捐赠科研通 2818938
什么是DOI,文献DOI怎么找? 1549855
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126