强化学习
初始化
稳健性(进化)
计算机科学
避碰
趋同(经济学)
运动规划
模型预测控制
人工智能
路径(计算)
数学优化
控制理论(社会学)
碰撞
控制(管理)
数学
机器人
计算机安全
生物化学
化学
经济增长
经济
基因
程序设计语言
作者
Mahya Ramezani,Hamed Habibi,José Luis Sánchez-López,Holger Voos
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2302.10669
摘要
In this paper, we tackle the problem of Unmanned Aerial (UA V) path planning in complex and uncertain environments by designing a Model Predictive Control (MPC), based on a Long-Short-Term Memory (LSTM) network integrated into the Deep Deterministic Policy Gradient algorithm. In the proposed solution, LSTM-MPC operates as a deterministic policy within the DDPG network, and it leverages a predicting pool to store predicted future states and actions for improved robustness and efficiency. The use of the predicting pool also enables the initialization of the critic network, leading to improved convergence speed and reduced failure rate compared to traditional reinforcement learning and deep reinforcement learning methods. The effectiveness of the proposed solution is evaluated by numerical simulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI