Boundary-oriented Network for Automatic Breast Tumor Segmentation in Ultrasound Images

雅卡索引 分割 人工智能 计算机科学 乳腺超声检查 模式识别(心理学) 特征(语言学) 乳腺癌 特征提取 乳腺摄影术 计算机视觉 医学 癌症 语言学 内科学 哲学
作者
Mengmeng Zhang,Aibin Huang,Debiao Yang,Rui Xu
出处
期刊:Ultrasonic Imaging [SAGE Publishing]
卷期号:45 (2): 62-73 被引量:7
标识
DOI:10.1177/01617346231162925
摘要

Breast cancer is considered as the most prevalent cancer. Using ultrasound images is a momentous clinical diagnosis method to locate breast tumors. However, accurate segmentation of breast tumors remains an open problem due to ultrasound artifacts, low contrast, and complicated tumor shapes in ultrasound images. To address this issue, we proposed a boundary-oriented network (BO-Net) for boosting breast tumor segmentation in ultrasound images. The BO-Net boosts tumor segmentation performance from two perspectives. Firstly, a boundary-oriented module (BOM) was designed to capture the weak boundaries of breast tumors by learning additional breast tumor boundary maps. Second, we focus on enhanced feature extraction, which takes advantage of the Atrous Spatial Pyramid Pooling (ASPP) module and Squeeze-and-Excitation (SE) block to obtain multi-scale and efficient feature information. We evaluate our network on two public datasets: Dataset B and BUSI. For the Dataset B, our network achieves 0.8685 in Dice, 0.7846 in Jaccard, 0.8604 in Precision, 0.9078 in Recall, and 0.9928 in Specificity. For the BUSI dataset, our network achieves 0.7954 in Dice, 0.7033 in Jaccard, 0.8275 in Precision, 0.8251 in Recall, and 0.9814 in Specificity. Experimental results show that BO-Net outperforms the state-of-the-art segmentation methods for breast tumor segmentation in ultrasound images. It demonstrates that focusing on boundary and feature enhancement creates more efficient and robust breast tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5High_0发布了新的文献求助10
1秒前
搜集达人应助祥子的骆驼采纳,获得10
1秒前
小二郎应助mm采纳,获得10
1秒前
小马甲应助dsfsd采纳,获得10
1秒前
2秒前
HenryXiao发布了新的文献求助10
2秒前
天天快乐应助花生采纳,获得10
2秒前
3秒前
金不换完成签到,获得积分10
3秒前
3秒前
hxl发布了新的文献求助30
3秒前
4秒前
VelesAlexei完成签到,获得积分10
4秒前
田様应助小粉红wow~~~采纳,获得10
5秒前
5秒前
猪猪hero发布了新的文献求助10
5秒前
hdh发布了新的文献求助10
6秒前
coke发布了新的文献求助10
6秒前
硬膜之下完成签到,获得积分10
6秒前
zyzhnu完成签到,获得积分10
6秒前
大力凡儿完成签到 ,获得积分10
7秒前
笑羽发布了新的文献求助10
7秒前
7秒前
Ryuki完成签到 ,获得积分10
9秒前
9秒前
毛毛发布了新的文献求助10
9秒前
10秒前
10秒前
Jiayi完成签到,获得积分10
10秒前
10秒前
11秒前
酷波er应助巴拉巴拉巴采纳,获得10
12秒前
12秒前
12秒前
SWL发布了新的文献求助10
12秒前
13秒前
今后应助张文静采纳,获得10
13秒前
14秒前
nino完成签到,获得积分10
14秒前
niat完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650