Comparative studies of predictive models for unsteady flow fields based on deep learning and proper orthogonal decomposition

稳健性(进化) 计算机科学 本征正交分解 自编码 深度学习 人工智能 流量(数学) 期限(时间) 模式识别(心理学) 交货地点 算法 数学 生物 化学 物理 基因 几何学 量子力学 生物化学 农学
作者
Yuhang Xu,Yangyang Sha,Cong Wang,Wei Cao,Yingjie Wei
出处
期刊:Ocean Engineering [Elsevier]
卷期号:272: 113935-113935 被引量:12
标识
DOI:10.1016/j.oceaneng.2023.113935
摘要

With the application of data-driven technologies in fluid mechanics, models based on Proper Orthogonal Decomposition (POD) and Deep Learning (DL) for predicting flow fields have gradually been used in the rapid analysis of flow fields. However, differences among predictive models have not been widely concerned. In this work, based on the dataset of the unsteady flow around a cylinder, POD-LSTM (Proper Orthogonal Decomposition - Long short-term memory) and CAE-LSTM (Convolutional Autoencoder - Long short-term memory) were designed to compare their prediction performances, which could predict flow fields of the following eight time steps from that of eight time steps before. In a prediction period, the predictive accuracy of models was compared to analyze sources of error. In the long-term, it is noticed that the predictive accuracy of POD-LSTM decreased significantly with the increase of time steps, while CAE-LSTM maintained good robustness until the last time step. In addition, the phenomena of random predictions are presented in high-order temporal coefficients, which led to POD-LSTM's worse performance. Due to the capability of fusing spatiotemporal features, CAE-LSTM shows better accuracy and robustness in the long-term prediction period.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
传奇3应助彪壮的慕山采纳,获得10
1秒前
2秒前
2秒前
科研人发布了新的文献求助10
2秒前
酷波er应助懒123采纳,获得10
2秒前
3秒前
3秒前
gffh完成签到,获得积分10
4秒前
陈章zz发布了新的文献求助20
4秒前
He完成签到,获得积分10
5秒前
5秒前
Leon发布了新的文献求助30
5秒前
领导范儿应助形容采纳,获得10
5秒前
斯文败类应助草莓苹果采纳,获得10
6秒前
死亦生矣发布了新的文献求助10
7秒前
YWD发布了新的文献求助10
7秒前
tttt发布了新的文献求助10
7秒前
世界小奇发布了新的文献求助10
8秒前
Yuan发布了新的文献求助10
8秒前
汉堡包应助感动冰岚采纳,获得10
9秒前
科研通AI6应助jiang采纳,获得10
9秒前
淡淡的无敌完成签到 ,获得积分10
11秒前
11秒前
天天快乐应助kkyy采纳,获得30
12秒前
autism发布了新的文献求助10
12秒前
独特的水香完成签到,获得积分10
12秒前
脑洞疼应助背后的映寒采纳,获得10
12秒前
华仔应助Sing采纳,获得10
12秒前
12秒前
12秒前
13秒前
lyx完成签到,获得积分20
13秒前
13秒前
dagongren关注了科研通微信公众号
13秒前
任性的皮皮虾完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526107
求助须知:如何正确求助?哪些是违规求助? 4616283
关于积分的说明 14552778
捐赠科研通 4554503
什么是DOI,文献DOI怎么找? 2495919
邀请新用户注册赠送积分活动 1476266
关于科研通互助平台的介绍 1447928