易燃液体
转导(生物物理学)
纳米传感器
计算机科学
材料科学
纳米技术
环境科学
化学
生物化学
有机化学
作者
Dionisio V. Del Orbe Henriquez,Mingu Kang,In-Cheol Cho,Jeong‐Woo Choi,Jaeho Park,Osman Gul,Junseong Ahn,Dae‐Sik Lee,Inkyu Park
标识
DOI:10.1002/smtd.202201352
摘要
Abstract Toxic and flammable gases pose a major safety risk in industrial settings; thus, their portable sensing is desired, which requires sensors with fast response, low‐power consumption, and accurate detection. Herein, a low‐power, multi‐transduction array is presented for the accurate sensing of flammable and toxic gases. Specifically, four different sensors are integrated on a micro‐electro‐mechanical‐systems platform consisting of bridge‐type microheaters. To produce distinct fingerprints for enhanced selectivity, the four sensors operate based on two different transduction mechanisms: chemiresistive and calorimetric sensing. Local, in situ synthesis routes are used to integrate nanostructured materials (ZnO, CuO, and Pt Black) for the sensors on the microheaters. The transient responses of the four sensors are fed to a convolutional neural network for real‐time classification and regression of five different gases (H 2 , NO 2 , C 2 H 6 O, CO, and NH 3 ). An overall classification accuracy of 97.95%, an average regression error of 14%, and a power consumption of 7 mW per device are obtained. The combination of a versatile low‐power platform, local integration of nanomaterials, different transduction mechanisms, and a real‐time machine learning strategy presented herein helps advance the constant need to simultaneously achieve fast, low‐power, and selective gas sensing of flammable and toxic gases.
科研通智能强力驱动
Strongly Powered by AbleSci AI