Charge Density Evolution Governing Interfacial Friction

消散 范德瓦尔斯力 打滑(空气动力学) 化学 化学物理 离子键合 密度泛函理论 机械 凝聚态物理 纳米技术 材料科学 物理 热力学 计算化学 分子 离子 有机化学
作者
Junhui Sun,Xin Zhang,Shiyu Du,Jibin Pu,Yang Wang,Yanping Yuan,Linmao Qian,Joseph S. Francisco
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (9): 5536-5544 被引量:25
标识
DOI:10.1021/jacs.3c00335
摘要

It is well-known that the electron nature of a solid in contact plays a predominant role in determining the many properties of the contact systems, but the general rules of electron coupling that govern interfacial friction remain an open issue for the surface/interface community. Here, density functional theory calculations were used to investigate the physical origins of friction of solid interfaces. It was found that interfacial friction can be inherently traced back to the electronic barrier to the change in the contact configuration of the joints in slip due to the resistance of energy level rearrangement leading to electron transfer, which applies for various interface types ranging from van der Waals, metallic, and ionic to covalent joints. The variation of the electron density accompanying contact conformation changes along the sliding pathways is defined to track the frictional energy dissipation process occurring in slip. The results demonstrate that the frictional energy landscapes evolve synchronously with responding charge density evolution along sliding pathways, yielding an explicitly linear dependence of frictional dissipation on electronic evolution. The correlation coefficient enables us to interpret the fundamental concept of shear strength. The present charge evolution model thereby provides insights into the classic hypothesis that the friction force scales with the real contact area. This may shed light on the intrinsic origin of friction at the electronic level, opening the way to the rational design of nanomechanical devices as well as the understanding of the natural faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高的青寒完成签到,获得积分10
刚刚
1秒前
夏时安完成签到,获得积分10
1秒前
彭于晏应助马弗炉炸鸡采纳,获得10
1秒前
1秒前
科研通AI5应助Choo采纳,获得10
1秒前
四喜完成签到,获得积分10
1秒前
Akim应助gaoqinghong采纳,获得10
2秒前
2秒前
study_0001完成签到,获得积分10
2秒前
3秒前
卖鱼的乌鸦完成签到,获得积分10
3秒前
3秒前
求知的周发布了新的文献求助10
3秒前
123RAN完成签到,获得积分20
3秒前
4秒前
子车安萱完成签到,获得积分10
4秒前
缥缈的半芹完成签到,获得积分10
4秒前
4秒前
Zzz关闭了Zzz文献求助
4秒前
whl发布了新的文献求助10
5秒前
minzi发布了新的文献求助10
5秒前
冷静乌龟应助王超采纳,获得10
5秒前
5秒前
5秒前
cdercder应助林先生采纳,获得20
6秒前
dicc发布了新的文献求助10
6秒前
高有财发布了新的文献求助10
6秒前
Flac发布了新的文献求助100
7秒前
7秒前
斯文败类应助nimeng123采纳,获得10
7秒前
自由从筠发布了新的文献求助10
7秒前
7秒前
大橘发布了新的文献求助10
8秒前
8秒前
顾矜应助阿东c采纳,获得10
8秒前
科研通AI5应助YOP采纳,获得10
8秒前
ynlxl90发布了新的文献求助10
9秒前
劲秉应助柚子采纳,获得30
9秒前
奕初阳完成签到,获得积分10
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474213
求助须知:如何正确求助?哪些是违规求助? 3066542
关于积分的说明 9099652
捐赠科研通 2757822
什么是DOI,文献DOI怎么找? 1513156
邀请新用户注册赠送积分活动 699436
科研通“疑难数据库(出版商)”最低求助积分说明 698963