已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Thoughts of brain EEG signal-to-text conversion using weighted feature fusion-based Multiscale Dilated Adaptive DenseNet with Attention Mechanism

计算机科学 特征(语言学) 人工智能 卷积神经网络 集合(抽象数据类型) 水准点(测量) 模式识别(心理学) 脑电图 融合机制 编码(集合论) 脑-机接口 源代码 语音识别 融合 哲学 精神科 操作系统 脂质双层融合 语言学 程序设计语言 地理 心理学 大地测量学
作者
Jing Yang,Muhammad Awais,Md. Amzad Hossain,Lip Yee Por,Ma. Haowei,Ibrahim M. Mehedi,Ahmed I. Iskanderani
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 105120-105120 被引量:5
标识
DOI:10.1016/j.bspc.2023.105120
摘要

Individuals with visual inefficiencies or different abilities face difficulties using their hands to operate smartphones and computers, necessitating reliance on others to enter data. Such dependence may lead to security and privacy issues, especially when sensitive information is shared with helpers. To address this problem, we present Think2Type, an efficient Brain-Computer Interface (BCI) that enables users to translate their active intentions into text format based on Morse code. BCI leverages brain activity to facilitate interaction with computers, often captured via Electroencephalography (EEG). This work proposes an enhanced attention-based deep learning strategy to develop an efficient text conversion mechanism from EEG signals. We begin by collecting EEG signals from standard benchmark datasets and extracting spectral and statistical features in phase 1, concatenating them into concatenated feature set 1 (F1). In phase 2, we extract spatial and temporal features via a One-Dimensional Convolutional Neural Network (1DCNN) and a Recurrent Neural Network (RNN), respectively, concatenating them into concatenated feature set 2 (F2). Weighted feature fusion is performed on concatenated features F1 and F2, with the hybrid optimization algorithm Eurasian Oystercatcher Wild Geese Migration Optimization (EOWGMO) optimizing the weight for improved fusion efficiency. The text conversion phase utilizes the Multiscale Dilated Adaptive DenseNet with Attention Mechanism (MDADenseNet-AM) to obtain the converted text information. The MDADenseNet-A's parameters are optimized to improve thought-to-text conversion performance. The developed model's performance is evaluated via experimental analysis and compared to conventional techniques, resulting in a higher accuracy value of 96.41%, facilitating appropriate text conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡罗特完成签到,获得积分20
3秒前
上官若男应助kk采纳,获得10
3秒前
XIXIXI发布了新的文献求助10
3秒前
hugo发布了新的文献求助10
5秒前
7秒前
8秒前
不周完成签到,获得积分20
9秒前
徐逊发布了新的文献求助10
10秒前
阿洁发布了新的文献求助10
11秒前
12秒前
汉堡包应助糊糊采纳,获得10
14秒前
hugo完成签到,获得积分20
15秒前
15秒前
17秒前
英姑应助王槿采纳,获得10
17秒前
阿洁完成签到,获得积分10
17秒前
xhj666发布了新的文献求助10
18秒前
19秒前
19秒前
君寻完成签到 ,获得积分10
20秒前
kk发布了新的文献求助10
21秒前
彭于晏应助科研通管家采纳,获得30
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
天天快乐应助科研通管家采纳,获得10
21秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
22秒前
sci发布了新的文献求助10
22秒前
田様应助科研通管家采纳,获得10
22秒前
wanci应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
木兆完成签到 ,获得积分10
22秒前
Owen应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得10
22秒前
22秒前
Ava应助神海采纳,获得10
22秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396