Emerging Atomic Layer Deposition for the Development of High-Performance Lithium-Ion Batteries

原子层沉积 阳极 分离器(采油) 电解质 材料科学 阴极 纳米技术 电池(电) 电极 涂层 电化学 储能 制作 图层(电子) 电气工程 化学 工程类 物理 病理 物理化学 功率(物理) 热力学 医学 替代医学 量子力学
作者
Sina Karimzadeh,Babak Safaei,Chris Yuan,Tien‐Chien Jen
出处
期刊:Electrochemical energy reviews [Springer Nature]
卷期号:6 (1) 被引量:52
标识
DOI:10.1007/s41918-023-00192-8
摘要

Abstract With the increasing demand for low-cost and environmentally friendly energy, the application of rechargeable lithium-ion batteries (LIBs) as reliable energy storage devices in electric cars, portable electronic devices and space satellites is on the rise. Therefore, extensive and continuous research on new materials and fabrication methods is required to achieve the desired enhancement in their electrochemical performance. Battery active components, including the cathode, anode, electrolyte, and separator, play an important role in LIB functionality. The major problem of LIBs is the degradation of the electrolyte and electrode materials and their components during the charge‒discharge process. Atomic layer deposition (ALD) is considered a promising coating technology to deposit uniform, ultrathin films at the atomic level with controllable thickness and composition. Various metal films can be deposited on the surface of active electrodes and solid electrolyte materials to tailor and generate a protective layer at the electrode interface. In addition, synthesis of microbatteries and novel nanocomplexes of the cathode, anode, and solid-state electrolyte to enhance the battery performance can all be attained by ALD. Therefore, the ALD technique has great potential to revolutionize the future of the battery industry. This review article provides a comprehensive foundation of the current state of ALD in synthesizing and developing LIB active components. Additionally, new trends and future expectations for the further development of next-generation LIBs via ALD are reported. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健的粉丝团团长应助ying采纳,获得10
刚刚
1秒前
稳重的大白完成签到 ,获得积分10
1秒前
1秒前
leekle完成签到,获得积分10
1秒前
lucky发布了新的文献求助10
2秒前
3秒前
36456657应助鳗鱼惠采纳,获得20
3秒前
高大凌寒应助endure采纳,获得10
4秒前
isjj完成签到,获得积分10
4秒前
小巧问筠完成签到,获得积分20
4秒前
鲸落发布了新的文献求助10
4秒前
似风完成签到,获得积分10
5秒前
刘欣发布了新的文献求助10
5秒前
5秒前
6秒前
buhui应助monair采纳,获得230
7秒前
Ava应助Nuyoah采纳,获得10
7秒前
ophlujun完成签到 ,获得积分10
7秒前
36456657应助鳗鱼惠采纳,获得20
8秒前
8秒前
琳琳发布了新的文献求助10
9秒前
9秒前
11秒前
金属玻璃兰兰完成签到,获得积分10
11秒前
11秒前
donfern完成签到,获得积分10
11秒前
11秒前
12秒前
跳跃尔琴发布了新的文献求助10
12秒前
YuanbinMao应助Yx采纳,获得10
13秒前
无极2023完成签到 ,获得积分10
13秒前
Susan完成签到,获得积分10
14秒前
15秒前
乐乐乐乐乐乐应助北辰采纳,获得10
15秒前
画图发布了新的文献求助30
15秒前
无聊的怀绿完成签到,获得积分10
16秒前
Hello应助天天扫大街采纳,获得10
16秒前
情怀应助坚强映菱采纳,获得10
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3226600
求助须知:如何正确求助?哪些是违规求助? 2874946
关于积分的说明 8188627
捐赠科研通 2541933
什么是DOI,文献DOI怎么找? 1372477
科研通“疑难数据库(出版商)”最低求助积分说明 646489
邀请新用户注册赠送积分活动 620853