清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning–Based Prognostic Model for Patients After Lung Transplantation

医学 布里氏评分 比例危险模型 肺移植 特征选择 回顾性队列研究 自举(财务) 移植 内科学 人工智能 计算机科学 数学 计量经济学
作者
Dong Tian,Hang Yan,Heng Huang,Yu-Jie Zuo,Ming-Zhao Liu,Jin Zhao,Bo Wu,Lingzhi Shi,Jingyu Chen
出处
期刊:JAMA network open [American Medical Association]
卷期号:6 (5): e2312022-e2312022 被引量:14
标识
DOI:10.1001/jamanetworkopen.2023.12022
摘要

Although numerous prognostic factors have been found for patients after lung transplantation (LTx) over the years, an accurate prognostic tool for LTx recipients remains unavailable.To develop and validate a prognostic model for predicting overall survival in patients after LTx using random survival forests (RSF), a machine learning algorithm.This retrospective prognostic study included patients who underwent LTx between January 2017 and December 2020. The LTx recipients were randomly assigned to training and test sets in accordance with a ratio of 7:3. Feature selection was performed using variable importance with bootstrapping resampling. The prognostic model was fitted using the RSF algorithm, and a Cox regression model was set as a benchmark. The integrated area under the curve (iAUC) and integrated Brier score (iBS) were applied to assess model performance in the test set. Data were analyzed from January 2017 to December 2019.Overall survival in patients after LTx.A total of 504 patients were eligible for this study, consisting of 353 patients in the training set (mean [SD] age, 55.03 [12.78] years; 235 [66.6%] male patients) and 151 patients in the test set (mean [SD] age, 56.79 [10.95] years; 99 [65.6%] male patients). According to the variable importance of each factor, 16 were selected for the final RSF model, and postoperative extracorporeal membrane oxygenation time was identified as the most valuable factor. The RSF model had excellent performance with an iAUC of 0.879 (95% CI, 0.832-0.921) and an iBS of 0.130 (95% CI, 0.106-0.154). The Cox regression model fitted by the same modeling factors to the RSF model was significantly inferior to the RSF model with an iAUC of 0.658 (95% CI, 0.572-0.747; P < .001) and an iBS of 0.205 (95% CI, 0.176-0.233; P < .001). According to the RSF model predictions, the patients after LTx were stratified into 2 prognostic groups displaying significant difference, with mean overall survival of 52.91 months (95% CI, 48.51-57.32) and 14.83 months (95% CI, 9.44-20.22; log-rank P < .001), respectively.In this prognostic study, the findings first demonstrated that RSF could provide more accurate overall survival prediction and remarkable prognostic stratification than the Cox regression model for patients after LTx.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
震动的机器猫完成签到,获得积分10
30秒前
35秒前
52秒前
1分钟前
壮观以松完成签到,获得积分20
1分钟前
music007完成签到,获得积分10
1分钟前
jyy应助科研通管家采纳,获得10
2分钟前
fareless完成签到 ,获得积分10
2分钟前
HLT完成签到 ,获得积分10
3分钟前
嬗变的天秤完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
科研通AI2S应助liudy采纳,获得10
6分钟前
7分钟前
QiaoHL完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
十二完成签到 ,获得积分10
8分钟前
8分钟前
Airi发布了新的文献求助10
9分钟前
9分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139610
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795394
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176