Machine Learning–Based Prognostic Model for Patients After Lung Transplantation

医学 布里氏评分 比例危险模型 肺移植 特征选择 回顾性队列研究 自举(财务) 移植 内科学 人工智能 计算机科学 数学 计量经济学
作者
Dong Tian,Hao‐Ji Yan,Heng Huang,Yu-Jie Zuo,Ming-Zhao Liu,Jin Zhao,Bo Wu,Lingzhi Shi,Jingyu Chen
出处
期刊:JAMA network open [American Medical Association]
卷期号:6 (5): e2312022-e2312022 被引量:41
标识
DOI:10.1001/jamanetworkopen.2023.12022
摘要

Although numerous prognostic factors have been found for patients after lung transplantation (LTx) over the years, an accurate prognostic tool for LTx recipients remains unavailable.To develop and validate a prognostic model for predicting overall survival in patients after LTx using random survival forests (RSF), a machine learning algorithm.This retrospective prognostic study included patients who underwent LTx between January 2017 and December 2020. The LTx recipients were randomly assigned to training and test sets in accordance with a ratio of 7:3. Feature selection was performed using variable importance with bootstrapping resampling. The prognostic model was fitted using the RSF algorithm, and a Cox regression model was set as a benchmark. The integrated area under the curve (iAUC) and integrated Brier score (iBS) were applied to assess model performance in the test set. Data were analyzed from January 2017 to December 2019.Overall survival in patients after LTx.A total of 504 patients were eligible for this study, consisting of 353 patients in the training set (mean [SD] age, 55.03 [12.78] years; 235 [66.6%] male patients) and 151 patients in the test set (mean [SD] age, 56.79 [10.95] years; 99 [65.6%] male patients). According to the variable importance of each factor, 16 were selected for the final RSF model, and postoperative extracorporeal membrane oxygenation time was identified as the most valuable factor. The RSF model had excellent performance with an iAUC of 0.879 (95% CI, 0.832-0.921) and an iBS of 0.130 (95% CI, 0.106-0.154). The Cox regression model fitted by the same modeling factors to the RSF model was significantly inferior to the RSF model with an iAUC of 0.658 (95% CI, 0.572-0.747; P < .001) and an iBS of 0.205 (95% CI, 0.176-0.233; P < .001). According to the RSF model predictions, the patients after LTx were stratified into 2 prognostic groups displaying significant difference, with mean overall survival of 52.91 months (95% CI, 48.51-57.32) and 14.83 months (95% CI, 9.44-20.22; log-rank P < .001), respectively.In this prognostic study, the findings first demonstrated that RSF could provide more accurate overall survival prediction and remarkable prognostic stratification than the Cox regression model for patients after LTx.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sanyecai发布了新的文献求助10
1秒前
1秒前
3秒前
3秒前
Volcano发布了新的文献求助10
4秒前
5秒前
星辰大海应助拓小八采纳,获得10
6秒前
Tao发布了新的文献求助10
7秒前
7秒前
Tangviva1988发布了新的文献求助10
7秒前
阳光沛柔发布了新的文献求助10
8秒前
SYLH应助cyn0762采纳,获得30
9秒前
13秒前
打打应助Tine采纳,获得30
14秒前
研友_VZG7GZ应助EED采纳,获得10
15秒前
缥缈问柳应助wjw采纳,获得10
15秒前
DijiaXu应助朝朝采纳,获得10
17秒前
sanyecai完成签到,获得积分10
17秒前
李健的小迷弟应助高铭泽采纳,获得10
20秒前
Zsl121完成签到,获得积分10
21秒前
21秒前
爆米花应助肖肖采纳,获得10
22秒前
22秒前
冬至完成签到,获得积分10
23秒前
24秒前
shenzhou9完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
lll完成签到,获得积分20
27秒前
欣喜豌豆完成签到,获得积分10
29秒前
彭于晏应助雨过天晴采纳,获得10
29秒前
李健的小迷弟应助唐_采纳,获得10
30秒前
云辞忧发布了新的文献求助10
30秒前
华仔应助Livrik采纳,获得10
30秒前
EED发布了新的文献求助10
31秒前
32秒前
33秒前
34秒前
赘婿应助hhhi采纳,获得10
34秒前
领导范儿应助康康采纳,获得10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035