Machine Learning–Based Prognostic Model for Patients After Lung Transplantation

医学 布里氏评分 比例危险模型 肺移植 特征选择 回顾性队列研究 自举(财务) 移植 内科学 人工智能 计算机科学 数学 计量经济学
作者
Dong Tian,Hao‐Ji Yan,Heng Huang,Yu-Jie Zuo,Ming-Zhao Liu,Jin Zhao,Bo Wu,Lingzhi Shi,Jingyu Chen
出处
期刊:JAMA network open [American Medical Association]
卷期号:6 (5): e2312022-e2312022 被引量:41
标识
DOI:10.1001/jamanetworkopen.2023.12022
摘要

Although numerous prognostic factors have been found for patients after lung transplantation (LTx) over the years, an accurate prognostic tool for LTx recipients remains unavailable.To develop and validate a prognostic model for predicting overall survival in patients after LTx using random survival forests (RSF), a machine learning algorithm.This retrospective prognostic study included patients who underwent LTx between January 2017 and December 2020. The LTx recipients were randomly assigned to training and test sets in accordance with a ratio of 7:3. Feature selection was performed using variable importance with bootstrapping resampling. The prognostic model was fitted using the RSF algorithm, and a Cox regression model was set as a benchmark. The integrated area under the curve (iAUC) and integrated Brier score (iBS) were applied to assess model performance in the test set. Data were analyzed from January 2017 to December 2019.Overall survival in patients after LTx.A total of 504 patients were eligible for this study, consisting of 353 patients in the training set (mean [SD] age, 55.03 [12.78] years; 235 [66.6%] male patients) and 151 patients in the test set (mean [SD] age, 56.79 [10.95] years; 99 [65.6%] male patients). According to the variable importance of each factor, 16 were selected for the final RSF model, and postoperative extracorporeal membrane oxygenation time was identified as the most valuable factor. The RSF model had excellent performance with an iAUC of 0.879 (95% CI, 0.832-0.921) and an iBS of 0.130 (95% CI, 0.106-0.154). The Cox regression model fitted by the same modeling factors to the RSF model was significantly inferior to the RSF model with an iAUC of 0.658 (95% CI, 0.572-0.747; P < .001) and an iBS of 0.205 (95% CI, 0.176-0.233; P < .001). According to the RSF model predictions, the patients after LTx were stratified into 2 prognostic groups displaying significant difference, with mean overall survival of 52.91 months (95% CI, 48.51-57.32) and 14.83 months (95% CI, 9.44-20.22; log-rank P < .001), respectively.In this prognostic study, the findings first demonstrated that RSF could provide more accurate overall survival prediction and remarkable prognostic stratification than the Cox regression model for patients after LTx.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小晓完成签到,获得积分10
刚刚
becky发布了新的文献求助10
1秒前
jszhoucl发布了新的文献求助10
2秒前
星期八发布了新的文献求助10
2秒前
时有落花至完成签到,获得积分10
2秒前
2秒前
无与伦比发布了新的文献求助30
6秒前
8秒前
一人独钓一江秋完成签到,获得积分10
8秒前
10秒前
11秒前
干雅柏发布了新的文献求助10
13秒前
搜集达人应助俏皮芷蕊采纳,获得10
15秒前
上官若男应助sugar采纳,获得10
16秒前
xxxllllll发布了新的文献求助30
16秒前
16秒前
CodeCraft应助wangqiuhong采纳,获得10
17秒前
19秒前
桐桐应助jszhoucl采纳,获得10
19秒前
黄健斌完成签到,获得积分10
20秒前
HarryChan完成签到,获得积分10
22秒前
25秒前
26秒前
26秒前
华仔应助小绵羊采纳,获得10
28秒前
Andema发布了新的文献求助10
29秒前
俏皮芷蕊发布了新的文献求助10
30秒前
31秒前
xiao_niu完成签到,获得积分10
31秒前
liu发布了新的文献求助10
32秒前
大模型应助墨水采纳,获得10
33秒前
cc完成签到,获得积分10
33秒前
Jackson完成签到,获得积分10
33秒前
852应助李茵采纳,获得10
34秒前
郭富城发布了新的文献求助10
34秒前
35秒前
量子星尘发布了新的文献求助10
39秒前
39秒前
Andema完成签到,获得积分10
40秒前
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174