Machine Learning–Based Prognostic Model for Patients After Lung Transplantation

医学 布里氏评分 比例危险模型 肺移植 特征选择 回顾性队列研究 自举(财务) 移植 内科学 人工智能 计算机科学 数学 计量经济学
作者
Dong Tian,Hao‐Ji Yan,Heng Huang,Yu-Jie Zuo,Ming-Zhao Liu,Jin Zhao,Bo Wu,Lingzhi Shi,Jingyu Chen
出处
期刊:JAMA network open [American Medical Association]
卷期号:6 (5): e2312022-e2312022 被引量:41
标识
DOI:10.1001/jamanetworkopen.2023.12022
摘要

Although numerous prognostic factors have been found for patients after lung transplantation (LTx) over the years, an accurate prognostic tool for LTx recipients remains unavailable.To develop and validate a prognostic model for predicting overall survival in patients after LTx using random survival forests (RSF), a machine learning algorithm.This retrospective prognostic study included patients who underwent LTx between January 2017 and December 2020. The LTx recipients were randomly assigned to training and test sets in accordance with a ratio of 7:3. Feature selection was performed using variable importance with bootstrapping resampling. The prognostic model was fitted using the RSF algorithm, and a Cox regression model was set as a benchmark. The integrated area under the curve (iAUC) and integrated Brier score (iBS) were applied to assess model performance in the test set. Data were analyzed from January 2017 to December 2019.Overall survival in patients after LTx.A total of 504 patients were eligible for this study, consisting of 353 patients in the training set (mean [SD] age, 55.03 [12.78] years; 235 [66.6%] male patients) and 151 patients in the test set (mean [SD] age, 56.79 [10.95] years; 99 [65.6%] male patients). According to the variable importance of each factor, 16 were selected for the final RSF model, and postoperative extracorporeal membrane oxygenation time was identified as the most valuable factor. The RSF model had excellent performance with an iAUC of 0.879 (95% CI, 0.832-0.921) and an iBS of 0.130 (95% CI, 0.106-0.154). The Cox regression model fitted by the same modeling factors to the RSF model was significantly inferior to the RSF model with an iAUC of 0.658 (95% CI, 0.572-0.747; P < .001) and an iBS of 0.205 (95% CI, 0.176-0.233; P < .001). According to the RSF model predictions, the patients after LTx were stratified into 2 prognostic groups displaying significant difference, with mean overall survival of 52.91 months (95% CI, 48.51-57.32) and 14.83 months (95% CI, 9.44-20.22; log-rank P < .001), respectively.In this prognostic study, the findings first demonstrated that RSF could provide more accurate overall survival prediction and remarkable prognostic stratification than the Cox regression model for patients after LTx.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小趴菜完成签到,获得积分10
2秒前
lcls完成签到,获得积分10
3秒前
3秒前
4秒前
尊敬太阳发布了新的文献求助10
6秒前
风中夜天完成签到 ,获得积分10
6秒前
优雅友蕊完成签到,获得积分10
7秒前
gaga完成签到,获得积分10
8秒前
西北孤傲的狼完成签到,获得积分10
9秒前
多边形完成签到 ,获得积分10
11秒前
李cc完成签到,获得积分10
13秒前
13秒前
快帮我找找完成签到,获得积分10
13秒前
xiezhuochun完成签到 ,获得积分10
14秒前
17秒前
aixiaoming0503完成签到,获得积分10
18秒前
forge完成签到,获得积分10
18秒前
19秒前
Distance完成签到,获得积分10
22秒前
蒋念寒发布了新的文献求助10
23秒前
雪雨夜心完成签到,获得积分10
27秒前
又是一年完成签到,获得积分10
28秒前
Distance发布了新的文献求助10
29秒前
李子完成签到 ,获得积分10
30秒前
30秒前
耍酷的指甲油完成签到,获得积分20
31秒前
安小磊完成签到 ,获得积分10
32秒前
雄i完成签到,获得积分10
35秒前
明亮的遥完成签到 ,获得积分0
37秒前
安澜完成签到,获得积分10
37秒前
MG_XSJ应助1111采纳,获得10
40秒前
尊敬太阳完成签到,获得积分20
41秒前
42秒前
量子星尘发布了新的文献求助30
43秒前
健壮安柏完成签到 ,获得积分10
44秒前
Jasper应助忧郁紫翠采纳,获得10
45秒前
45秒前
46秒前
46秒前
rayqiang完成签到,获得积分10
46秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022