Machine Learning–Based Prognostic Model for Patients After Lung Transplantation

医学 布里氏评分 比例危险模型 肺移植 特征选择 回顾性队列研究 自举(财务) 移植 内科学 人工智能 计算机科学 数学 计量经济学
作者
Dong Tian,Hang Yan,Heng Huang,Yu-Jie Zuo,Ming-Zhao Liu,Jin Zhao,Bo Wu,Lingzhi Shi,Jingyu Chen
出处
期刊:JAMA network open [American Medical Association]
卷期号:6 (5): e2312022-e2312022 被引量:14
标识
DOI:10.1001/jamanetworkopen.2023.12022
摘要

Although numerous prognostic factors have been found for patients after lung transplantation (LTx) over the years, an accurate prognostic tool for LTx recipients remains unavailable.To develop and validate a prognostic model for predicting overall survival in patients after LTx using random survival forests (RSF), a machine learning algorithm.This retrospective prognostic study included patients who underwent LTx between January 2017 and December 2020. The LTx recipients were randomly assigned to training and test sets in accordance with a ratio of 7:3. Feature selection was performed using variable importance with bootstrapping resampling. The prognostic model was fitted using the RSF algorithm, and a Cox regression model was set as a benchmark. The integrated area under the curve (iAUC) and integrated Brier score (iBS) were applied to assess model performance in the test set. Data were analyzed from January 2017 to December 2019.Overall survival in patients after LTx.A total of 504 patients were eligible for this study, consisting of 353 patients in the training set (mean [SD] age, 55.03 [12.78] years; 235 [66.6%] male patients) and 151 patients in the test set (mean [SD] age, 56.79 [10.95] years; 99 [65.6%] male patients). According to the variable importance of each factor, 16 were selected for the final RSF model, and postoperative extracorporeal membrane oxygenation time was identified as the most valuable factor. The RSF model had excellent performance with an iAUC of 0.879 (95% CI, 0.832-0.921) and an iBS of 0.130 (95% CI, 0.106-0.154). The Cox regression model fitted by the same modeling factors to the RSF model was significantly inferior to the RSF model with an iAUC of 0.658 (95% CI, 0.572-0.747; P < .001) and an iBS of 0.205 (95% CI, 0.176-0.233; P < .001). According to the RSF model predictions, the patients after LTx were stratified into 2 prognostic groups displaying significant difference, with mean overall survival of 52.91 months (95% CI, 48.51-57.32) and 14.83 months (95% CI, 9.44-20.22; log-rank P < .001), respectively.In this prognostic study, the findings first demonstrated that RSF could provide more accurate overall survival prediction and remarkable prognostic stratification than the Cox regression model for patients after LTx.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
简单的思菱完成签到 ,获得积分10
2秒前
2秒前
明理的踏歌完成签到,获得积分10
3秒前
3秒前
不做科研废物完成签到,获得积分10
3秒前
悦耳的冰枫完成签到,获得积分10
4秒前
三一发布了新的文献求助10
4秒前
leibaozun完成签到 ,获得积分10
4秒前
www完成签到 ,获得积分10
5秒前
三黑猫应助缥缈的雨泽采纳,获得10
5秒前
6秒前
Joeswith完成签到,获得积分10
6秒前
洋芋片完成签到,获得积分10
6秒前
英姑应助故意的鸿涛采纳,获得10
7秒前
甜辣小泡芙完成签到,获得积分10
9秒前
薰硝壤应助晾猫人采纳,获得10
9秒前
11秒前
企鹅完成签到,获得积分10
11秒前
12秒前
13秒前
15秒前
今后应助小葱沛菜采纳,获得10
16秒前
16秒前
16秒前
jiaqitang完成签到 ,获得积分10
16秒前
yuyu发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
英俊的铭应助yimuyixiu采纳,获得10
18秒前
Owen应助Fancy采纳,获得10
19秒前
爱笑的眼睛完成签到,获得积分10
20秒前
13发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
破伤疯完成签到 ,获得积分10
21秒前
asd发布了新的文献求助10
21秒前
always完成签到 ,获得积分10
22秒前
高分求助中
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3089386
求助须知:如何正确求助?哪些是违规求助? 2741586
关于积分的说明 7565941
捐赠科研通 2392093
什么是DOI,文献DOI怎么找? 1268497
科研通“疑难数据库(出版商)”最低求助积分说明 614069
版权声明 598692