MKFGO: Integrating Multi-Source Knowledge Fusion with Pre-Trained Language Model for High-Accuracy Protein Function Prediction

计算机科学 融合 功能(生物学) 人工智能 自然语言处理 机器学习 语言学 生物 哲学 进化生物学
作者
Yiheng Zhu,Shenglong Zhu,Xuan Yu,Yan He,Yan Liu,Xiaojun Xie,Dong‐Jun Yu,Rui Ye
标识
DOI:10.1101/2025.03.27.645685
摘要

Accurately identifying protein functions is essential to understand life mechanisms and thus advance drug discovery. Although biochemical experiments are the gold standard for determining protein functions, they are often time-consuming and labor-intensive. Here, we proposed a novel composite deep-learning method, MKFGO, to infer Gene Ontology (GO) attributes through integrating five complementary pipelines built on multi-source biological data. MKFGO was rigorously benchmarked on 1522 non-redundant proteins, demonstrating superior performance over 11 state-of-the-art function prediction methods. Comprehensive data analyses revealed that the major advantage of MKFGO lies in its two deep-learning components, HFRGO and PLMGO, which derive handcraft features and protein large language model (PLM)-based features, respectively, from protein sequences in different biological views, with effective knowledge fusion at the decision-level. HFRGO leverages an LSTM-attention network embedded with handcraft features, in which the triplet loss-based guilt-by-association strategy is designed to enhance the correlation between feature similarity and function similarity. PLMGO employs the PLM to capture feature embeddings with discriminative functional patterns from sequences. Meanwhile, another three components provide complementary insights for further improving prediction accuracy, driven by protein-protein interaction, GO term probability, and protein-coding gene sequence, respectively. The source codes and models of MKFGO are freely available at https://github.com/yiheng-zhu/MKFGO.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
骄傲慕尼黑完成签到,获得积分10
6秒前
devilfish13发布了新的文献求助10
7秒前
cq_2完成签到,获得积分0
8秒前
JrPaleo101发布了新的文献求助100
9秒前
LeuinPonsgi完成签到,获得积分10
10秒前
土豆晴完成签到 ,获得积分10
10秒前
105完成签到 ,获得积分10
15秒前
15秒前
sun完成签到,获得积分10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
剑K完成签到,获得积分10
21秒前
26秒前
28秒前
愉快道之完成签到 ,获得积分10
29秒前
个性的汲完成签到,获得积分10
34秒前
溯鸣完成签到 ,获得积分10
35秒前
d_fishier完成签到 ,获得积分10
37秒前
影像大侠完成签到,获得积分10
38秒前
fd163c应助个性的汲采纳,获得10
39秒前
kirisaki完成签到 ,获得积分10
45秒前
Mt完成签到,获得积分10
48秒前
完美世界应助orchid采纳,获得10
48秒前
研友Bn完成签到 ,获得积分10
49秒前
诗蕊完成签到 ,获得积分0
52秒前
2025顺顺利利完成签到 ,获得积分10
54秒前
agent完成签到 ,获得积分10
56秒前
57秒前
孝顺的觅风完成签到 ,获得积分10
58秒前
阿白完成签到 ,获得积分10
1分钟前
HLT完成签到 ,获得积分10
1分钟前
1分钟前
五月完成签到 ,获得积分10
1分钟前
章鱼完成签到,获得积分10
1分钟前
Ruuo616完成签到 ,获得积分10
1分钟前
orchid发布了新的文献求助10
1分钟前
木头完成签到,获得积分10
1分钟前
wxyinhefeng完成签到 ,获得积分10
1分钟前
兔兔完成签到 ,获得积分10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733477
求助须知:如何正确求助?哪些是违规求助? 3277631
关于积分的说明 10003612
捐赠科研通 2993682
什么是DOI,文献DOI怎么找? 1642790
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944