Extended atom-based and bond-based group contribution descriptor and its application to melting point prediction of energetic compounds

均方误差 随机森林 数学 群(周期表) 集合(抽象数据类型) 试验装置 分子描述符 均方根 平均绝对误差 相关系数 Atom(片上系统) 训练集 数量结构-活动关系 化学 统计 人工智能 计算机科学 立体化学 物理 有机化学 嵌入式系统 程序设计语言 量子力学
作者
Ding-ling Kong,Yue Luan,Xiaowei Zhao,Yanhua Lü,Wei Li,Qingyou Zhang,Aimin Pang
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:243: 105021-105021
标识
DOI:10.1016/j.chemolab.2023.105021
摘要

17817 compounds were collected from the Bradley open melting point data set, including eight elements: C, H, O, N, F, S, Cl, Br, and I. An extended atom-based and bond-based group contribution descriptor was suggested to represent these compounds, which consists of a one-dimensional descriptor based on the Molecular formula, a two-dimensional group contribution descriptor based on atoms and bonds, and a structural feature descriptor. Random forest (RF), Partial Least Squares (PLS), and Deep Learning (DL) methods were used to establish models to predict melting points, and the constructed models were evaluated by correlation coefficient (R), mean absolute error (MAE) and root-mean-square error (RMSE). Among them, the best results were obtained using the model constructed by Random forest: the results of out-of-bag (OOB) cross-validation of the training set are R = 0.8977/MAE = 29.57 °C/RMSE = 40.34 °C; the predicted results of the test set are R = 0.8982/MAE = 29.68 °C/RMSE = 40.63 °C. Compared with the results obtained using the subset of this data set in a literature, the results in this study are better than the corresponding results in the literature. The established model was also used to predict an external data set consisting of 74 compounds retrieved from another literature, and the obtained results are R = 0.8946 °C/MAE = 24.51 °C/RMSE = 34.19 °C, which were significantly better than the corresponding results in the literature. If the descriptor suggested in this study is combined with RDKit descriptor that contains charge and Electronegativity information and so on, better results were achieved: the results of OOB cross-validation of the training set are R = 0.9013/MAE = 29.25 °C/RMSE = 39.76 °C; the results of the test set are R = 0.9017/MAE = 29.34 °C/RMSE = 40.07 °C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
GGBOND2024应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
Maestro_S应助科研通管家采纳,获得20
刚刚
Owen应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得50
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
Maestro_S应助科研通管家采纳,获得20
1秒前
1秒前
ding应助欣喜代秋采纳,获得10
2秒前
2秒前
jason发布了新的文献求助10
4秒前
5秒前
6秒前
李健的小迷弟应助阿盛采纳,获得10
6秒前
6秒前
6秒前
7秒前
8秒前
雪白雍完成签到,获得积分10
10秒前
nini发布了新的文献求助10
10秒前
执着翠芙发布了新的文献求助10
11秒前
ddd完成签到,获得积分10
11秒前
12秒前
冷静的豪发布了新的文献求助10
12秒前
jason完成签到,获得积分20
15秒前
FashionBoy应助笑点低的碧琴采纳,获得10
16秒前
16秒前
爱猫的纭发布了新的文献求助10
16秒前
yinjs158完成签到,获得积分10
17秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141042
求助须知:如何正确求助?哪些是违规求助? 2791997
关于积分的说明 7801347
捐赠科研通 2448241
什么是DOI,文献DOI怎么找? 1302480
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226