清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Extended atom-based and bond-based group contribution descriptor and its application to melting point prediction of energetic compounds

均方误差 随机森林 数学 群(周期表) 集合(抽象数据类型) 试验装置 分子描述符 均方根 平均绝对误差 相关系数 Atom(片上系统) 训练集 数量结构-活动关系 化学 统计 人工智能 计算机科学 立体化学 物理 有机化学 量子力学 嵌入式系统 程序设计语言
作者
Ding-ling Kong,Yue Luan,Xiaowei Zhao,Yanhua Lü,Wei Li,Qingyou Zhang,Aimin Pang
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:243: 105021-105021
标识
DOI:10.1016/j.chemolab.2023.105021
摘要

17817 compounds were collected from the Bradley open melting point data set, including eight elements: C, H, O, N, F, S, Cl, Br, and I. An extended atom-based and bond-based group contribution descriptor was suggested to represent these compounds, which consists of a one-dimensional descriptor based on the Molecular formula, a two-dimensional group contribution descriptor based on atoms and bonds, and a structural feature descriptor. Random forest (RF), Partial Least Squares (PLS), and Deep Learning (DL) methods were used to establish models to predict melting points, and the constructed models were evaluated by correlation coefficient (R), mean absolute error (MAE) and root-mean-square error (RMSE). Among them, the best results were obtained using the model constructed by Random forest: the results of out-of-bag (OOB) cross-validation of the training set are R = 0.8977/MAE = 29.57 °C/RMSE = 40.34 °C; the predicted results of the test set are R = 0.8982/MAE = 29.68 °C/RMSE = 40.63 °C. Compared with the results obtained using the subset of this data set in a literature, the results in this study are better than the corresponding results in the literature. The established model was also used to predict an external data set consisting of 74 compounds retrieved from another literature, and the obtained results are R = 0.8946 °C/MAE = 24.51 °C/RMSE = 34.19 °C, which were significantly better than the corresponding results in the literature. If the descriptor suggested in this study is combined with RDKit descriptor that contains charge and Electronegativity information and so on, better results were achieved: the results of OOB cross-validation of the training set are R = 0.9013/MAE = 29.25 °C/RMSE = 39.76 °C; the results of the test set are R = 0.9017/MAE = 29.34 °C/RMSE = 40.07 °C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
003完成签到,获得积分10
3秒前
19秒前
35秒前
无悔完成签到 ,获得积分10
36秒前
001完成签到,获得积分10
37秒前
41秒前
42秒前
喵叽发布了新的文献求助10
47秒前
锅包肉完成签到 ,获得积分10
1分钟前
002完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
Sandy完成签到,获得积分0
1分钟前
小白菜完成签到 ,获得积分10
1分钟前
1分钟前
digger2023完成签到 ,获得积分10
1分钟前
史琛完成签到,获得积分20
2分钟前
2分钟前
2分钟前
WenJun完成签到,获得积分10
2分钟前
3分钟前
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
史琛发布了新的文献求助10
3分钟前
乒坛巨人完成签到 ,获得积分10
3分钟前
3分钟前
Dr.Tang完成签到 ,获得积分10
4分钟前
4分钟前
Siren发布了新的文献求助30
4分钟前
披着羊皮的狼完成签到 ,获得积分10
4分钟前
4分钟前
sci完成签到 ,获得积分10
5分钟前
5分钟前
酷波er应助科研通管家采纳,获得10
5分钟前
Ava应助科研通管家采纳,获得10
5分钟前
yindi1991完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI5应助Siren采纳,获得10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513331
关于积分的说明 11167297
捐赠科研通 3248697
什么是DOI,文献DOI怎么找? 1794417
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664