Extended atom-based and bond-based group contribution descriptor and its application to melting point prediction of energetic compounds

均方误差 随机森林 数学 群(周期表) 集合(抽象数据类型) 试验装置 分子描述符 均方根 平均绝对误差 相关系数 Atom(片上系统) 训练集 数量结构-活动关系 化学 统计 人工智能 计算机科学 立体化学 物理 有机化学 量子力学 嵌入式系统 程序设计语言
作者
Ding-ling Kong,Yue Luan,Xiaowei Zhao,Yanhua Lü,Wei Li,Qingyou Zhang,Aimin Pang
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:243: 105021-105021
标识
DOI:10.1016/j.chemolab.2023.105021
摘要

17817 compounds were collected from the Bradley open melting point data set, including eight elements: C, H, O, N, F, S, Cl, Br, and I. An extended atom-based and bond-based group contribution descriptor was suggested to represent these compounds, which consists of a one-dimensional descriptor based on the Molecular formula, a two-dimensional group contribution descriptor based on atoms and bonds, and a structural feature descriptor. Random forest (RF), Partial Least Squares (PLS), and Deep Learning (DL) methods were used to establish models to predict melting points, and the constructed models were evaluated by correlation coefficient (R), mean absolute error (MAE) and root-mean-square error (RMSE). Among them, the best results were obtained using the model constructed by Random forest: the results of out-of-bag (OOB) cross-validation of the training set are R = 0.8977/MAE = 29.57 °C/RMSE = 40.34 °C; the predicted results of the test set are R = 0.8982/MAE = 29.68 °C/RMSE = 40.63 °C. Compared with the results obtained using the subset of this data set in a literature, the results in this study are better than the corresponding results in the literature. The established model was also used to predict an external data set consisting of 74 compounds retrieved from another literature, and the obtained results are R = 0.8946 °C/MAE = 24.51 °C/RMSE = 34.19 °C, which were significantly better than the corresponding results in the literature. If the descriptor suggested in this study is combined with RDKit descriptor that contains charge and Electronegativity information and so on, better results were achieved: the results of OOB cross-validation of the training set are R = 0.9013/MAE = 29.25 °C/RMSE = 39.76 °C; the results of the test set are R = 0.9017/MAE = 29.34 °C/RMSE = 40.07 °C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心心完成签到 ,获得积分10
刚刚
123完成签到,获得积分10
1秒前
温超完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
3秒前
Menta1y完成签到,获得积分10
3秒前
czzlancer完成签到,获得积分10
4秒前
汶溢完成签到,获得积分10
4秒前
xsss完成签到,获得积分10
5秒前
TAN完成签到,获得积分10
5秒前
通通通发布了新的文献求助10
6秒前
liudw完成签到,获得积分10
6秒前
丹丹子完成签到 ,获得积分10
7秒前
时光完成签到,获得积分10
7秒前
8秒前
充电宝应助vsvsgo采纳,获得10
10秒前
123完成签到 ,获得积分10
12秒前
Ammr完成签到 ,获得积分10
12秒前
无限的依波完成签到,获得积分10
12秒前
姽婳wy发布了新的文献求助10
13秒前
lemon完成签到,获得积分10
13秒前
传奇3应助duckspy采纳,获得30
14秒前
陈木木完成签到,获得积分10
15秒前
可可西里完成签到,获得积分10
16秒前
奋斗蜗牛完成签到,获得积分10
16秒前
CipherSage应助眼睛大的擎苍采纳,获得10
16秒前
打打应助小小酥采纳,获得10
17秒前
fox完成签到 ,获得积分10
17秒前
僦是卜够完成签到 ,获得积分10
18秒前
小马甲应助嘉梦采纳,获得10
21秒前
qiqi完成签到,获得积分10
22秒前
22秒前
科研乞丐应助Jerry采纳,获得20
23秒前
vsvsgo发布了新的文献求助10
25秒前
Jeffrey完成签到,获得积分10
26秒前
明理采珊完成签到,获得积分10
26秒前
lll发布了新的文献求助10
26秒前
vsvsgo发布了新的文献求助10
29秒前
慎之完成签到 ,获得积分10
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022