Extended atom-based and bond-based group contribution descriptor and its application to melting point prediction of energetic compounds

均方误差 随机森林 数学 群(周期表) 集合(抽象数据类型) 试验装置 分子描述符 均方根 平均绝对误差 相关系数 Atom(片上系统) 训练集 数量结构-活动关系 化学 统计 人工智能 计算机科学 立体化学 物理 有机化学 嵌入式系统 程序设计语言 量子力学
作者
Ding-ling Kong,Yue Luan,Xiaowei Zhao,Yanhua Lü,Wei Li,Qingyou Zhang,Aimin Pang
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:243: 105021-105021
标识
DOI:10.1016/j.chemolab.2023.105021
摘要

17817 compounds were collected from the Bradley open melting point data set, including eight elements: C, H, O, N, F, S, Cl, Br, and I. An extended atom-based and bond-based group contribution descriptor was suggested to represent these compounds, which consists of a one-dimensional descriptor based on the Molecular formula, a two-dimensional group contribution descriptor based on atoms and bonds, and a structural feature descriptor. Random forest (RF), Partial Least Squares (PLS), and Deep Learning (DL) methods were used to establish models to predict melting points, and the constructed models were evaluated by correlation coefficient (R), mean absolute error (MAE) and root-mean-square error (RMSE). Among them, the best results were obtained using the model constructed by Random forest: the results of out-of-bag (OOB) cross-validation of the training set are R = 0.8977/MAE = 29.57 °C/RMSE = 40.34 °C; the predicted results of the test set are R = 0.8982/MAE = 29.68 °C/RMSE = 40.63 °C. Compared with the results obtained using the subset of this data set in a literature, the results in this study are better than the corresponding results in the literature. The established model was also used to predict an external data set consisting of 74 compounds retrieved from another literature, and the obtained results are R = 0.8946 °C/MAE = 24.51 °C/RMSE = 34.19 °C, which were significantly better than the corresponding results in the literature. If the descriptor suggested in this study is combined with RDKit descriptor that contains charge and Electronegativity information and so on, better results were achieved: the results of OOB cross-validation of the training set are R = 0.9013/MAE = 29.25 °C/RMSE = 39.76 °C; the results of the test set are R = 0.9017/MAE = 29.34 °C/RMSE = 40.07 °C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
小杭76应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
2秒前
Yu完成签到,获得积分10
2秒前
shihui完成签到 ,获得积分10
3秒前
完美世界应助dandelion采纳,获得10
3秒前
3秒前
3秒前
幸福妙柏发布了新的文献求助10
5秒前
0610完成签到,获得积分10
5秒前
lixioani219完成签到,获得积分10
5秒前
6秒前
加缪发布了新的文献求助10
6秒前
沙新镇完成签到,获得积分10
6秒前
听雨发布了新的文献求助10
6秒前
ruru发布了新的文献求助10
6秒前
吉祥如意完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
从容的白容完成签到,获得积分10
10秒前
无花果应助布丁采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5017460
求助须知:如何正确求助?哪些是违规求助? 4257073
关于积分的说明 13267567
捐赠科研通 4061370
什么是DOI,文献DOI怎么找? 2221225
邀请新用户注册赠送积分活动 1230555
关于科研通互助平台的介绍 1153161