An IoT based forest fire detection system using integration of cat swarm with LSTM model

计算机科学 群体行为 过程(计算) 人工智能 群体智能 人工神经网络 钥匙(锁) 生计 机器学习 计算机安全 粒子群优化 生态学 生物 农业 操作系统
作者
R Mahaveerakannan,Cuddapah Anitha,Aby K Thomas,Sanju Rajan,T. Muthukumar,G. Govinda Rajulu
出处
期刊:Computer Communications [Elsevier BV]
卷期号:211: 37-45 被引量:3
标识
DOI:10.1016/j.comcom.2023.08.020
摘要

The destruction of millions of acres of forest each year by forest fires is a global environmental crisis that has real-world consequences for people's livelihoods and the health of our planet. The ability to foresee the onset of such a natural disaster is, thus, of paramount importance in reducing this risk. There have been numerous proposed technologies and novel approaches for detecting and preventing forest fires. Integrating AI to automate fire prediction and detection is becoming increasingly common. To provide effective forest fire detection, people make use of several technological expansions, with the IoT for data collecting and Artificial Intelligence (AI) for the forecast process. Artificial intelligence (AI) is a key study technique that has been proven to be the best in enhancing the presentation of detecting fire threats in important locations by several researchers. Due to the importance of object detection in this investigation, EfficientDet was chosen for implementation. It is suggested that fire breakouts be detected using a Recurrent LSTM Neural Network (RLSTM-NN). Here, we propose a Cat Swarm Fractional Calculus Optimization (CSFCO) algorithm for deep learning that combines the best features of Cat Swarm Optimization (CSO) with fractional calculus for optimal training results (FC). Terms of the simulation results reveal that the suggested process outdoes the state-of-the-art approaches. The suggested typical can identify the onset of a fire with a precision of 98.6% and an error rate of only 0.14%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楚寅完成签到 ,获得积分10
1秒前
浮游应助ppcat采纳,获得10
1秒前
科研通AI6应助Criminology34采纳,获得10
2秒前
byron完成签到,获得积分10
2秒前
科研通AI6应助lim采纳,获得50
3秒前
等待凝海发布了新的文献求助10
3秒前
3秒前
阿湫完成签到,获得积分10
3秒前
zzy发布了新的文献求助20
4秒前
苹果冬莲完成签到,获得积分10
4秒前
Yao发布了新的文献求助10
4秒前
找不完完成签到,获得积分10
5秒前
Ava应助狮朱采纳,获得10
5秒前
A.M完成签到 ,获得积分10
5秒前
苏安泠完成签到 ,获得积分10
6秒前
joysel完成签到 ,获得积分10
6秒前
jinhongyangkim完成签到,获得积分20
7秒前
小鱼儿发布了新的文献求助10
7秒前
科目三应助子同829采纳,获得10
8秒前
FashionBoy应助infinity采纳,获得10
9秒前
Yt完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
SJK完成签到,获得积分10
12秒前
隐形曼青应助daiweiwei采纳,获得10
12秒前
bsect完成签到,获得积分10
13秒前
香菜丸子发布了新的文献求助10
14秒前
Orange应助carter6713采纳,获得10
14秒前
14秒前
14秒前
15秒前
乐乐应助冷艳的导师采纳,获得10
15秒前
cc发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
七叶完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4906930
求助须知:如何正确求助?哪些是违规求助? 4184232
关于积分的说明 12993216
捐赠科研通 3950519
什么是DOI,文献DOI怎么找? 2166565
邀请新用户注册赠送积分活动 1185122
关于科研通互助平台的介绍 1091450