An IoT based forest fire detection system using integration of cat swarm with LSTM model

计算机科学 群体行为 过程(计算) 人工智能 群体智能 人工神经网络 钥匙(锁) 生计 机器学习 计算机安全 粒子群优化 生态学 生物 农业 操作系统
作者
R Mahaveerakannan,Cuddapah Anitha,Aby K Thomas,Sanju Rajan,T. Muthukumar,G. Govinda Rajulu
出处
期刊:Computer Communications [Elsevier BV]
卷期号:211: 37-45 被引量:3
标识
DOI:10.1016/j.comcom.2023.08.020
摘要

The destruction of millions of acres of forest each year by forest fires is a global environmental crisis that has real-world consequences for people's livelihoods and the health of our planet. The ability to foresee the onset of such a natural disaster is, thus, of paramount importance in reducing this risk. There have been numerous proposed technologies and novel approaches for detecting and preventing forest fires. Integrating AI to automate fire prediction and detection is becoming increasingly common. To provide effective forest fire detection, people make use of several technological expansions, with the IoT for data collecting and Artificial Intelligence (AI) for the forecast process. Artificial intelligence (AI) is a key study technique that has been proven to be the best in enhancing the presentation of detecting fire threats in important locations by several researchers. Due to the importance of object detection in this investigation, EfficientDet was chosen for implementation. It is suggested that fire breakouts be detected using a Recurrent LSTM Neural Network (RLSTM-NN). Here, we propose a Cat Swarm Fractional Calculus Optimization (CSFCO) algorithm for deep learning that combines the best features of Cat Swarm Optimization (CSO) with fractional calculus for optimal training results (FC). Terms of the simulation results reveal that the suggested process outdoes the state-of-the-art approaches. The suggested typical can identify the onset of a fire with a precision of 98.6% and an error rate of only 0.14%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YH应助Rico采纳,获得20
刚刚
wxqz发布了新的文献求助10
1秒前
青云客发布了新的文献求助20
1秒前
华仔应助畅快黎昕采纳,获得10
2秒前
2秒前
我是老大应助怡然的向南采纳,获得30
3秒前
研友_8RaVBZ发布了新的文献求助10
3秒前
尊敬乐蕊发布了新的文献求助10
4秒前
5秒前
情怀应助芝麻糊采纳,获得10
5秒前
科研通AI5应助不想搞科研采纳,获得10
5秒前
雁兰完成签到,获得积分20
5秒前
小黑爱搞科研完成签到,获得积分10
5秒前
7秒前
脑洞疼应助Tayiba采纳,获得10
8秒前
逍遥发布了新的文献求助10
10秒前
眼睛大浩轩完成签到,获得积分10
10秒前
化合物来发布了新的文献求助20
10秒前
11秒前
11秒前
Owen应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
kekao发布了新的文献求助10
12秒前
MXene应助科研通管家采纳,获得20
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得30
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得150
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
脑洞疼应助美满元灵采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
13秒前
Tamarin应助科研通管家采纳,获得10
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733036
求助须知:如何正确求助?哪些是违规求助? 3277209
关于积分的说明 10001026
捐赠科研通 2992875
什么是DOI,文献DOI怎么找? 1642479
邀请新用户注册赠送积分活动 780435
科研通“疑难数据库(出版商)”最低求助积分说明 748830