An IoT based forest fire detection system using integration of cat swarm with LSTM model

计算机科学 群体行为 过程(计算) 人工智能 群体智能 人工神经网络 钥匙(锁) 生计 机器学习 计算机安全 粒子群优化 生态学 生物 农业 操作系统
作者
R Mahaveerakannan,Cuddapah Anitha,Aby K Thomas,Sanju Rajan,T. Muthukumar,G. Govinda Rajulu
出处
期刊:Computer Communications [Elsevier]
卷期号:211: 37-45 被引量:3
标识
DOI:10.1016/j.comcom.2023.08.020
摘要

The destruction of millions of acres of forest each year by forest fires is a global environmental crisis that has real-world consequences for people's livelihoods and the health of our planet. The ability to foresee the onset of such a natural disaster is, thus, of paramount importance in reducing this risk. There have been numerous proposed technologies and novel approaches for detecting and preventing forest fires. Integrating AI to automate fire prediction and detection is becoming increasingly common. To provide effective forest fire detection, people make use of several technological expansions, with the IoT for data collecting and Artificial Intelligence (AI) for the forecast process. Artificial intelligence (AI) is a key study technique that has been proven to be the best in enhancing the presentation of detecting fire threats in important locations by several researchers. Due to the importance of object detection in this investigation, EfficientDet was chosen for implementation. It is suggested that fire breakouts be detected using a Recurrent LSTM Neural Network (RLSTM-NN). Here, we propose a Cat Swarm Fractional Calculus Optimization (CSFCO) algorithm for deep learning that combines the best features of Cat Swarm Optimization (CSO) with fractional calculus for optimal training results (FC). Terms of the simulation results reveal that the suggested process outdoes the state-of-the-art approaches. The suggested typical can identify the onset of a fire with a precision of 98.6% and an error rate of only 0.14%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助xxvvxx采纳,获得10
刚刚
NWNU简一关注了科研通微信公众号
1秒前
李健的小迷弟应助小蝶采纳,获得10
1秒前
小熊完成签到,获得积分10
2秒前
leaolf完成签到,获得积分0
2秒前
科研通AI6应助lz采纳,获得10
2秒前
星辰大海应助吃菜菜采纳,获得10
3秒前
清圆527完成签到,获得积分10
3秒前
JiaY完成签到,获得积分10
5秒前
5秒前
guyuangyy发布了新的文献求助10
5秒前
顺利雪糕完成签到,获得积分10
6秒前
shgook完成签到,获得积分10
6秒前
Ava应助璟晔采纳,获得10
6秒前
7秒前
错过花期的花完成签到 ,获得积分10
7秒前
8秒前
8秒前
1111完成签到,获得积分20
8秒前
斯文败类应助科研通管家采纳,获得10
9秒前
芋圆葡萄完成签到,获得积分10
9秒前
研友_VZG7GZ应助烟波钓徒采纳,获得10
9秒前
Zx_1993应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得30
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
9秒前
orixero应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
Zx_1993应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
10秒前
英姑应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
医学耗材完成签到 ,获得积分10
10秒前
SASI完成签到 ,获得积分10
10秒前
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340428
求助须知:如何正确求助?哪些是违规求助? 4476928
关于积分的说明 13933312
捐赠科研通 4372740
什么是DOI,文献DOI怎么找? 2402526
邀请新用户注册赠送积分活动 1395409
关于科研通互助平台的介绍 1367489