Deep Demand Prediction: An Enhanced Conformer Model With Cold-Start Adaptation for Origin–Destination Ride-Hailing Demand Prediction

计算机科学 适应(眼睛) 块(置换群论) 需求预测 运筹学 工程类 物理 几何学 数学 光学
作者
Hongyi Lin,Yixu He,Yang Liu,Kun Gao,Xiaobo Qu
出处
期刊:IEEE Intelligent Transportation Systems Magazine [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 111-124 被引量:13
标识
DOI:10.1109/mits.2023.3309653
摘要

In intelligent transportation systems, one key challenge for managing ride-hailing services is the balancing of traffic supply and demand while meeting passenger needs within vehicle availability constraints. Accurate origin–destination (OD) demand predictions can empower platforms to execute timely reallocation of cruising vehicles and improve ride-sharing services. Nonetheless, the complexity of OD-based demand prediction arises from intricate spatiotemporal dependencies and a higher need for precision compared to zone-based predictions, which leads to many unprecedented OD pairs. To tackle this issue, we design a comprehensive set of 102 features, including travel demand, passenger count, travel volume, liveliness, weather, and cross features. We also introduce an enhanced conformer model, which is composed of a single conformer block that integrates feedforward layers, multihead self-attention mechanisms, and depth-wise separable convolution layers. To address the cold-start problem and manage large values, we design a specific algorithm for OD pairs lacking training data and apply a technique to handle larger values. Our approach demonstrates a marked improvement in prediction performance, with an 18% decrease in the total travel demand error and up to a 47% reduction for certain larger values in some cases. Through extensive experiments on a dataset collected from a city, provided by a ride-hailing platform, our proposed methods significantly outperform the most advanced models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助科研通管家采纳,获得10
刚刚
怎么说应助科研通管家采纳,获得10
刚刚
wu8577应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
刚刚
今后应助科研通管家采纳,获得10
刚刚
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
格物致知发布了新的文献求助30
刚刚
1秒前
今后应助Nancy采纳,获得10
1秒前
1秒前
leichun完成签到,获得积分20
1秒前
大气海露发布了新的文献求助10
2秒前
2秒前
3秒前
stel7发布了新的文献求助10
3秒前
3秒前
3秒前
晏子完成签到,获得积分10
3秒前
果果发布了新的文献求助10
4秒前
权翼发布了新的文献求助10
4秒前
小郭应助tecumseh采纳,获得10
4秒前
一一发布了新的文献求助10
6秒前
王九八发布了新的文献求助10
6秒前
peanut发布了新的文献求助10
7秒前
ATOM完成签到,获得积分20
7秒前
7秒前
orixero应助陈冲采纳,获得10
7秒前
白羊发布了新的文献求助10
8秒前
8秒前
叫我一只球应助感冒了采纳,获得10
8秒前
哒哒哒完成签到 ,获得积分10
8秒前
传奇3应助瓜瓜瓜采纳,获得10
9秒前
9秒前
9秒前
黄婷发布了新的文献求助10
10秒前
10秒前
Ava应助泡泡糖与一世安采纳,获得30
11秒前
11秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352