异丙胺
化学
生物催化
生物量(生态学)
胺气处理
蔗渣
糠醛
有机化学
核化学
食品科学
生物
催化作用
生物技术
农学
离子液体
作者
Yuting Liu,Lei Li,Cuiluan Ma,Yubin He
标识
DOI:10.1016/j.biortech.2023.129638
摘要
Biobased furfurylamine (FAM) is a versatile platform molecule for producing additives, pharmaceuticals, and pesticides. Recombinant E. coli HNND-AlaDH was created by co-expressing L-alanine dehydrogenase (AlaDH) and mutated Aspergillus terreus ω-transaminase (HNND), aiming to convert furfural (FUR) into FAM using inexpensive L-alanine and isopropylamine as mixed amine donors. In ChCl:FA:OA (10 wt%), pineapple peel, bagasse, barley shell, peanut shell, and corn stalk could be efficiently transformed into FUR under 170 °C for 10 min. Pineapple peel produced a high titer of FUR (183.3 mM). Additionally, the viscosity, surface tension and polarity of ChCl:FA:OA were explored. The biomass-derived FUR was fully transformed to FAM by HNND-AlaDH with amine donor (1:1:1 of L-Ala/isopropylamine/FUR mol/mol/mol) within 300 min. Accordingly, the FAM productivity was 0.58 g/(g xylan in pineapple peel). This chemobiocatalytic strategy established through the combination of chemocatalysis and biocatalysis could be applied to convert renewable biomass into valuable organic amines.
科研通智能强力驱动
Strongly Powered by AbleSci AI