Attribute reduction based on fuzzy distinguishable pair metric considering redundancy upper and lower bounds

冗余(工程) 数学 公制(单位) 上下界 模糊逻辑 还原(数学) 模糊集 度量空间 计算机科学 算法 离散数学 人工智能 几何学 工程类 数学分析 运营管理 操作系统
作者
Jianhua Dai,Qi Liu,Changzhong Wang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tfuzz.2024.3394709
摘要

Attribute reduction, also called feature selection, serves as a widely adopted approach to reduce data processing complexity by eliminating irrelevant and redundant attributes. It plays a crucial role in addressing the challenges associated with high-dimensional data, optimizing computational resources, and enhancing learning performance. A well-designed attribute reduction method can effectively streamline data analysis processes and improve the overall efficiency and effectiveness of machine learning algorithms. To some extent, the quantity of information contained in an information system can be regarded as the number of distinguishable sample pairs it contains. In this article, the fuzzy distinguishable pair metric is proposed to measure the uncertainty. This metric measures uncertainty by comprehensively considering the number of fuzzy distinguishable pairs and the cardinality of fuzzy similarity relation. Correspondingly, variants of the fuzzy distinguishable pair metric such as joint distinguishable pair metric, conditional distinguishable pair metric, and mutual distinguishable pair metric are constructed. Moreover, the concepts of selected features redundancy upper bound and selected features redundancy lower bound are proposed. These two terms can be flexibly applied to the importance measure to alleviate the problem of over- or under-consideration redundancy. Considering the upper and lower bounds of the selected feature redundancy respectively, two new importance measures are proposed. Based on the previously proposed theory, two attribute reduction algorithms are designed. Finally, comparing the proposed two methods with six effective attribute reduction methods on eighteen datasets with four classifiers, our method achieves good results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向的白玉完成签到 ,获得积分10
刚刚
肉脸小鱼给肉脸小鱼的求助进行了留言
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
jbhb发布了新的文献求助10
3秒前
科目三应助Fury采纳,获得10
3秒前
小于一完成签到 ,获得积分10
3秒前
ttttt发布了新的文献求助10
3秒前
空城的回忆应助自信代真采纳,获得10
4秒前
所所应助糖糖科研顺利呀采纳,获得10
4秒前
4秒前
大模型应助胖虎采纳,获得10
5秒前
灯没点完成签到,获得积分10
6秒前
Lucas应助stretchability采纳,获得10
7秒前
小橙子发布了新的文献求助10
7秒前
追寻的山晴完成签到,获得积分10
8秒前
Gheros发布了新的文献求助30
8秒前
向绝山完成签到,获得积分10
9秒前
10秒前
10秒前
fighting发布了新的文献求助10
12秒前
13秒前
江南之南发布了新的文献求助10
13秒前
dayrim完成签到,获得积分10
13秒前
14秒前
Fury发布了新的文献求助10
15秒前
18秒前
松鼠非鼠完成签到,获得积分10
19秒前
王优秀发布了新的文献求助10
19秒前
20秒前
段月漪发布了新的文献求助10
21秒前
fighting完成签到,获得积分10
22秒前
小蘑菇应助111采纳,获得10
22秒前
24秒前
MM完成签到,获得积分10
26秒前
科研通AI2S应助帅气绮露采纳,获得10
26秒前
Lucas应助xl²-B采纳,获得30
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260778
求助须知:如何正确求助?哪些是违规求助? 2901898
关于积分的说明 8317946
捐赠科研通 2571648
什么是DOI,文献DOI怎么找? 1397111
科研通“疑难数据库(出版商)”最低求助积分说明 653655
邀请新用户注册赠送积分活动 632178