Attribute reduction based on fuzzy distinguishable pair metric considering redundancy upper and lower bounds

冗余(工程) 数学 公制(单位) 上下界 模糊逻辑 还原(数学) 模糊集 度量空间 计算机科学 算法 离散数学 人工智能 几何学 工程类 数学分析 操作系统 运营管理
作者
Jianhua Dai,Qi Liu,Changzhong Wang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tfuzz.2024.3394709
摘要

Attribute reduction, also called feature selection, serves as a widely adopted approach to reduce data processing complexity by eliminating irrelevant and redundant attributes. It plays a crucial role in addressing the challenges associated with high-dimensional data, optimizing computational resources, and enhancing learning performance. A well-designed attribute reduction method can effectively streamline data analysis processes and improve the overall efficiency and effectiveness of machine learning algorithms. To some extent, the quantity of information contained in an information system can be regarded as the number of distinguishable sample pairs it contains. In this article, the fuzzy distinguishable pair metric is proposed to measure the uncertainty. This metric measures uncertainty by comprehensively considering the number of fuzzy distinguishable pairs and the cardinality of fuzzy similarity relation. Correspondingly, variants of the fuzzy distinguishable pair metric such as joint distinguishable pair metric, conditional distinguishable pair metric, and mutual distinguishable pair metric are constructed. Moreover, the concepts of selected features redundancy upper bound and selected features redundancy lower bound are proposed. These two terms can be flexibly applied to the importance measure to alleviate the problem of over- or under-consideration redundancy. Considering the upper and lower bounds of the selected feature redundancy respectively, two new importance measures are proposed. Based on the previously proposed theory, two attribute reduction algorithms are designed. Finally, comparing the proposed two methods with six effective attribute reduction methods on eighteen datasets with four classifiers, our method achieves good results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
入江直熠发布了新的文献求助10
刚刚
weijian完成签到,获得积分10
1秒前
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
哈基米德应助科研通管家采纳,获得20
1秒前
哈基米德应助科研通管家采纳,获得20
1秒前
我是老大应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
小杭76应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
4秒前
Yu完成签到,获得积分10
4秒前
shihui完成签到 ,获得积分10
5秒前
完美世界应助dandelion采纳,获得10
5秒前
5秒前
5秒前
幸福妙柏发布了新的文献求助10
7秒前
0610完成签到,获得积分10
7秒前
lixioani219完成签到,获得积分10
7秒前
8秒前
加缪发布了新的文献求助10
8秒前
沙新镇完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5017460
求助须知:如何正确求助?哪些是违规求助? 4257073
关于积分的说明 13267567
捐赠科研通 4061370
什么是DOI,文献DOI怎么找? 2221225
邀请新用户注册赠送积分活动 1230555
关于科研通互助平台的介绍 1153161