Attribute Reduction Based on Fuzzy Distinguishable Pair Metric Considering Redundancy Upper and Lower Bounds

冗余(工程) 基数(数据建模) 数学 公制(单位) 上下界 相互信息 模糊逻辑 还原(数学) 数据挖掘 模糊集 特征选择 计算机科学 模式识别(心理学) 算法 人工智能 几何学 数学分析 运营管理 操作系统 经济
作者
Jianhua Dai,Qi Liu,Changzhong Wang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (8): 4364-4375 被引量:5
标识
DOI:10.1109/tfuzz.2024.3394709
摘要

Attribute reduction, also called feature selection, serves as a widely adopted approach to reduce data processing complexity by eliminating irrelevant and redundant attributes. It plays a crucial role in addressing the challenges associated with high-dimensional data, optimizing computational resources, and enhancing learning performance. A well-designed attribute reduction method can effectively streamline data analysis processes and improve the overall efficiency and effectiveness of machine learning algorithms. To some extent, the quantity of information contained in an information system can be regarded as the number of distinguishable sample pairs it contains. In this article, the fuzzy distinguishable pair metric is proposed to measure the uncertainty. This metric measures uncertainty by comprehensively considering the number of fuzzy distinguishable pairs and the cardinality of fuzzy similarity relation. Correspondingly, variants of the fuzzy distinguishable pair metric such as joint distinguishable pair metric, conditional distinguishable pair metric, and mutual distinguishable pair metric are constructed. Moreover, the concepts of selected features redundancy upper bound and selected features redundancy lower bound are proposed. These two terms can be flexibly applied to the importance measure to alleviate the problem of over- or under-consideration redundancy. Considering the upper and lower bounds of the selected feature redundancy respectively, two new importance measures are proposed. Based on the previously proposed theory, two attribute reduction algorithms are designed. Finally, comparing the proposed two methods with six effective attribute reduction methods on eighteen datasets with four classifiers, our method achieves good results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
harden9159完成签到,获得积分10
3秒前
大力水手完成签到,获得积分0
3秒前
ppc完成签到,获得积分10
4秒前
认真的艳完成签到,获得积分10
5秒前
guard发布了新的文献求助30
5秒前
wss完成签到,获得积分10
6秒前
qw完成签到,获得积分10
6秒前
踏雪飞鸿完成签到,获得积分10
7秒前
半山完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
鱼鱼鱼完成签到,获得积分10
12秒前
成就的寄灵完成签到 ,获得积分10
12秒前
无名完成签到,获得积分0
13秒前
ZHI发布了新的文献求助10
14秒前
cc66发布了新的文献求助10
15秒前
yKkkkkk完成签到,获得积分10
16秒前
烟花应助a成采纳,获得10
16秒前
17秒前
19秒前
shuoliu完成签到 ,获得积分10
21秒前
碧蓝百合完成签到,获得积分10
22秒前
六六发布了新的文献求助10
23秒前
ZHI完成签到,获得积分10
23秒前
123456qi完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
所所应助白日幻想家采纳,获得10
26秒前
三千完成签到,获得积分10
27秒前
29秒前
猕猴桃完成签到,获得积分10
30秒前
xiaolei001应助清晨的小鹿采纳,获得10
30秒前
次时代完成签到,获得积分10
31秒前
32秒前
彩色的誉完成签到,获得积分10
33秒前
kk完成签到,获得积分10
34秒前
猪猪hero发布了新的文献求助30
37秒前
hyPang完成签到,获得积分10
37秒前
37秒前
叶子完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789548
求助须知:如何正确求助?哪些是违规求助? 5721282
关于积分的说明 15474982
捐赠科研通 4917368
什么是DOI,文献DOI怎么找? 2646953
邀请新用户注册赠送积分活动 1594561
关于科研通互助平台的介绍 1549099