BP-DDI: Drug-drug interaction prediction based on biological information and pharmacological text

药物数据库 药品 计算机科学 生物学数据 药物警戒 系统药理学 计算生物学 人工智能 药理学 生物信息学 医学 生物
作者
Mingliang Dou,Han Han,Genlang Chen,Fei Guo,Jijun Tang
标识
DOI:10.1109/bibm55620.2022.9995174
摘要

In the treatment of many diseases, combination drug therapy has been widely used and achieved good clinical efficacy. However, drug-drug interaction (DDI) may occur between multiple drugs and pose a huge threat to the health of patients. Therefore, predicting the presence or absence of DDI among multiple drugs is an important part of pharmacovigilance. Currently, various computational methods for DDI prediction usually use biological information such as molecular structures, targets and enzymes of drugs, or construct heterogeneous networks about drugs, diseases, and genes, so as to obtain abundant information related to drugs. In addition to biological data, pharmacology texts also contain a wealth of information about drug properties, but these texts have not yet been applied to DDI predictions. In this study, we first collect six types of pharmacology texts from DrugBank that can reflect properties of drugs, and propose a novel method named BP-DDI which can combine biological information and pharmacological text to realize DDI event prediction. BP-DDI first extracts biological features (chemical substructure features and target features) from biological data, and then extracts specific types of text features from the collected pharmacology text data. Finally, the biological features are fused with different types of pharmacological text features in order to predict DDI events. Our experiments demonstrate that BP-DDI outperforms existing methods on all three types of prediction tasks. BP-DDI achieves 0.9052 on ACC, and achieves 0.9612 on AUPR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
风趣猫咪完成签到,获得积分10
1秒前
jqy关注了科研通微信公众号
4秒前
心灵美天完成签到,获得积分10
4秒前
ILBY完成签到,获得积分10
4秒前
小灰灰完成签到 ,获得积分10
4秒前
阿柴_Htao完成签到,获得积分10
5秒前
7秒前
chenn完成签到 ,获得积分10
7秒前
8秒前
9秒前
所所应助yuanzhilong采纳,获得10
10秒前
10秒前
12秒前
Su9ar发布了新的文献求助10
13秒前
自觉从筠完成签到 ,获得积分10
14秒前
墨墨完成签到,获得积分10
14秒前
流川枫给流川枫的求助进行了留言
15秒前
ILBY发布了新的文献求助10
15秒前
16秒前
NexusExplorer应助zxh采纳,获得10
21秒前
逍遥自在完成签到,获得积分10
23秒前
玛奇玛完成签到,获得积分10
25秒前
欢呼忆丹完成签到 ,获得积分10
27秒前
qqq发布了新的文献求助10
30秒前
所所应助炙热小馒头采纳,获得10
31秒前
科研狗完成签到 ,获得积分10
32秒前
36秒前
orixero应助赵勇采纳,获得10
37秒前
可乐应助yao采纳,获得10
38秒前
38秒前
41秒前
nancyyyy发布了新的文献求助10
41秒前
科研通AI2S应助Khr1stINK采纳,获得10
44秒前
45秒前
宝爸完成签到 ,获得积分10
46秒前
47秒前
在水一方应助无为采纳,获得10
48秒前
Andrew02应助lvrunyu采纳,获得30
48秒前
流川枫发布了新的文献求助10
49秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313559
求助须知:如何正确求助?哪些是违规求助? 2945879
关于积分的说明 8527489
捐赠科研通 2621538
什么是DOI,文献DOI怎么找? 1433778
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650637