Insulator defect detection algorithm based on improved YOLOv5s

计算机科学 算法
作者
Wenming Huang,Tingting Li,Yannan Xiao,Yayuan Wen,Zhenrong Deng
标识
DOI:10.1117/12.2656656
摘要

As one of the extremely important components on the transmission tower, the insulator has two functions of electrical insulation and wire fixing, which directly affects the operation of the power system. Defects in insulators can impair the service life of transmission lines. UAV aerial photography of electric power towers has problems such as small number of defective insulator samples, small area, large aspect ratio of insulator strings, and variable inclination angle, coupled with the influence of environmental factors such as light, interference, distance, etc., which lead to low detection accuracy of insulator defects. Aiming at the above problems, an improved YOLOv5 insulator defect detection algorithm is proposed. First, screen the aerial images and use data augmentation to obtain a sufficient number of defective insulator images to enrich the dataset and avoid model overfitting. Secondly, the convolutional attention module CBAM is introduced to improve the expression ability of defect insulator features and strengthen the network's ability to identify targets. Finally, the Leaky ReLU activation function of the hidden layer of the original YOLOv5 algorithm is replaced by the Mish function to improve the generalization ability of the network. The experimental results show that compared with the original YOLOv5 algorithm, the average precision mAP (IOU=0.5) of the improved algorithm is increased by 7.8%, which effectively improves the problems of false detection and missed detection in the original algorithm. Compared with other mainstream object detection algorithms, the algorithm proposed in this paper has better detection effect on insulator defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity应助阿飞采纳,获得10
刚刚
yy完成签到 ,获得积分10
3秒前
领导范儿应助单纯面包采纳,获得10
3秒前
xinC完成签到 ,获得积分10
4秒前
NexusExplorer应助紧张的妖妖采纳,获得10
5秒前
5秒前
哈哈哈哈发布了新的文献求助30
6秒前
8秒前
aaoo发布了新的文献求助10
9秒前
wenjian发布了新的文献求助10
10秒前
ding应助甜美的音响采纳,获得10
10秒前
11秒前
11秒前
希勤发布了新的文献求助10
13秒前
zhinian28完成签到 ,获得积分10
14秒前
焚风发布了新的文献求助10
16秒前
16秒前
阿飞完成签到,获得积分10
17秒前
嘀嘀哒哒发布了新的文献求助10
17秒前
无趣养乐多完成签到 ,获得积分10
17秒前
快乐小恬完成签到 ,获得积分10
18秒前
JamesPei应助冷酷的听兰采纳,获得10
18秒前
HEIKU应助dingdingkche采纳,获得10
18秒前
20秒前
希勤完成签到,获得积分10
21秒前
小张同学完成签到,获得积分10
21秒前
共享精神应助嘀嘀哒哒采纳,获得10
22秒前
22秒前
22秒前
23秒前
zyyin发布了新的文献求助10
24秒前
12341完成签到,获得积分10
25秒前
26秒前
26秒前
26秒前
墨秘一完成签到,获得积分10
27秒前
sutharsons应助毛豆爸爸采纳,获得200
29秒前
alltoowell完成签到,获得积分0
29秒前
追寻清完成签到,获得积分10
30秒前
sadascaqwqw完成签到 ,获得积分10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137412
求助须知:如何正确求助?哪些是违规求助? 2788462
关于积分的说明 7786566
捐赠科研通 2444645
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625712
版权声明 601023