已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ward‐Specific Probabilistic Patterns in Temporal Dynamics of Nursing Demand in Japanese Large University Hospital: Implication for Forecasting and Resource Allocation

护理管理 概率逻辑 资源配置 资源(消歧) 动力学(音乐) 护理部 医学 心理学 计算机科学 人工智能 计算机网络 教育学
作者
Rie Tajika,Yoshiaki Inoue,K Nakashima,Takako Yoshimi,Nobue Arimoto,Haruna Fukushige,Yoko Taniura,Tomoyuki Iwasaki,Atsue Ishii
出处
期刊:Journal of Nursing Management [Wiley]
卷期号:2024 (1)
标识
DOI:10.1155/2024/2554273
摘要

As global populations age, a looming nursing shortage is anticipated to become a critical issue. Charge nurses have the responsibility of optimally allocating nursing resources to ensure the quality of patient care during a shift. Therefore, an accurate estimate of nursing demand is crucial. However, the ability to forecast future nursing demand remains underdeveloped, mainly because the nature of nursing demand is highly individualized and does not follow a definitive pattern. In practice, the nursing demand is often perceived as unpredictable, leading to an ad hoc approach to staffing. The primary objective of our study is to demonstrate that longitudinal data analysis can reveal strong statistical regularities in the temporal dynamics of nursing demand. This approach not only provides new possibilities for efficient resource allocation but also paves the way for data‐driven prediction of nursing demand. Our study uses Sankey diagrams to visualize the temporal dynamics of nursing demand within each ward for each fiscal year, representing these dynamics as an overlay of trajectories from multiple individual patients. Consequently, our study reveals ward‐specific statistical regularities in the temporal dynamics of nursing demand. In one ward, approximately 25% of patients experienced an increase in nursing demand from 1 to between 6 and 9 points from the second to the third day of hospitalization, while in another, only 0.1% showed such an increase. These findings suggest that patients admitted to the wards tend to exhibit a certain probabilistic change in nursing demand. This study can predict probabilistically the temporal variation of nursing demand among patients in the coming years by analyzing data on the temporal changes in nursing demand over the past years. Our findings are expected to significantly influence the forecasting of nursing demand and the estimation of nursing resources, leading to data‐driven and more efficient nursing management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
菜鸡游泳发布了新的文献求助10
4秒前
SiO2完成签到 ,获得积分0
5秒前
5秒前
君寻完成签到 ,获得积分10
6秒前
6秒前
6秒前
小蘑菇应助babalababa采纳,获得10
7秒前
7秒前
8秒前
中标发布了新的文献求助10
10秒前
10秒前
10秒前
公西凝芙发布了新的文献求助10
12秒前
14秒前
15秒前
15秒前
15秒前
Royal耗子完成签到,获得积分10
17秒前
haobhaobhaob发布了新的文献求助10
18秒前
19秒前
科研通AI5应助豆豆可采纳,获得10
19秒前
20秒前
Royal耗子发布了新的文献求助10
20秒前
慕青应助诺贝尔一直讲采纳,获得30
21秒前
公西凝芙完成签到,获得积分10
21秒前
科研通AI6应助弎夜采纳,获得30
21秒前
langqi发布了新的文献求助10
22秒前
Miya发布了新的文献求助30
22秒前
23秒前
haobhaobhaob完成签到,获得积分10
25秒前
凯蒂发布了新的文献求助10
26秒前
28秒前
哎健身发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
30秒前
momoni完成签到 ,获得积分10
30秒前
优秀的山芙关注了科研通微信公众号
31秒前
32秒前
豆豆可发布了新的文献求助10
34秒前
Olivia发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542