Ward‐Specific Probabilistic Patterns in Temporal Dynamics of Nursing Demand in Japanese Large University Hospital: Implication for Forecasting and Resource Allocation

护理管理 概率逻辑 资源配置 资源(消歧) 动力学(音乐) 护理部 医学 心理学 计算机科学 人工智能 教育学 计算机网络
作者
Rie Tajika,Yoshiaki Inoue,K Nakashima,Takako Yoshimi,Nobue Arimoto,Haruna Fukushige,Yoko Taniura,Tomoyuki Iwasaki,Atsue Ishii
出处
期刊:Journal of Nursing Management [Wiley]
卷期号:2024 (1)
标识
DOI:10.1155/2024/2554273
摘要

As global populations age, a looming nursing shortage is anticipated to become a critical issue. Charge nurses have the responsibility of optimally allocating nursing resources to ensure the quality of patient care during a shift. Therefore, an accurate estimate of nursing demand is crucial. However, the ability to forecast future nursing demand remains underdeveloped, mainly because the nature of nursing demand is highly individualized and does not follow a definitive pattern. In practice, the nursing demand is often perceived as unpredictable, leading to an ad hoc approach to staffing. The primary objective of our study is to demonstrate that longitudinal data analysis can reveal strong statistical regularities in the temporal dynamics of nursing demand. This approach not only provides new possibilities for efficient resource allocation but also paves the way for data‐driven prediction of nursing demand. Our study uses Sankey diagrams to visualize the temporal dynamics of nursing demand within each ward for each fiscal year, representing these dynamics as an overlay of trajectories from multiple individual patients. Consequently, our study reveals ward‐specific statistical regularities in the temporal dynamics of nursing demand. In one ward, approximately 25% of patients experienced an increase in nursing demand from 1 to between 6 and 9 points from the second to the third day of hospitalization, while in another, only 0.1% showed such an increase. These findings suggest that patients admitted to the wards tend to exhibit a certain probabilistic change in nursing demand. This study can predict probabilistically the temporal variation of nursing demand among patients in the coming years by analyzing data on the temporal changes in nursing demand over the past years. Our findings are expected to significantly influence the forecasting of nursing demand and the estimation of nursing resources, leading to data‐driven and more efficient nursing management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hsr_eye发布了新的文献求助10
1秒前
Des完成签到,获得积分10
2秒前
不安白秋发布了新的文献求助10
2秒前
无霜发布了新的文献求助10
2秒前
zz驳回了小青椒应助
2秒前
斯文败类应助wzy采纳,获得10
2秒前
自然的曲奇完成签到 ,获得积分10
2秒前
2秒前
2秒前
善学以致用应助dakjdia采纳,获得10
3秒前
离线请留言完成签到,获得积分10
3秒前
ding应助QIQI采纳,获得10
3秒前
无名小卒每文完成签到,获得积分10
3秒前
邢丹丹发布了新的文献求助10
3秒前
4秒前
5秒前
蓝天发布了新的文献求助10
6秒前
Akim应助春花采纳,获得10
6秒前
youy发布了新的文献求助20
6秒前
7秒前
多情易蓉完成签到,获得积分10
7秒前
7秒前
微光完成签到,获得积分10
7秒前
毛毛完成签到,获得积分10
8秒前
8秒前
大大怪发布了新的文献求助20
8秒前
9秒前
9秒前
斯文败类应助欣慰雪巧采纳,获得10
10秒前
梅菜菜完成签到,获得积分10
10秒前
12秒前
Hello应助zyx采纳,获得10
13秒前
13秒前
学术小白完成签到,获得积分10
13秒前
13秒前
梅菜菜发布了新的文献求助10
13秒前
舒克发布了新的文献求助10
14秒前
Rgly完成签到 ,获得积分10
14秒前
负责中恶完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933