已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ward‐Specific Probabilistic Patterns in Temporal Dynamics of Nursing Demand in Japanese Large University Hospital: Implication for Forecasting and Resource Allocation

护理管理 概率逻辑 资源配置 资源(消歧) 动力学(音乐) 护理部 医学 心理学 计算机科学 人工智能 计算机网络 教育学
作者
Rie Tajika,Yoshiaki Inoue,K Nakashima,Takako Yoshimi,Nobue Arimoto,Haruna Fukushige,Yoko Taniura,Tomoyuki Iwasaki,Atsue Ishii
出处
期刊:Journal of Nursing Management [Wiley]
卷期号:2024 (1)
标识
DOI:10.1155/2024/2554273
摘要

As global populations age, a looming nursing shortage is anticipated to become a critical issue. Charge nurses have the responsibility of optimally allocating nursing resources to ensure the quality of patient care during a shift. Therefore, an accurate estimate of nursing demand is crucial. However, the ability to forecast future nursing demand remains underdeveloped, mainly because the nature of nursing demand is highly individualized and does not follow a definitive pattern. In practice, the nursing demand is often perceived as unpredictable, leading to an ad hoc approach to staffing. The primary objective of our study is to demonstrate that longitudinal data analysis can reveal strong statistical regularities in the temporal dynamics of nursing demand. This approach not only provides new possibilities for efficient resource allocation but also paves the way for data‐driven prediction of nursing demand. Our study uses Sankey diagrams to visualize the temporal dynamics of nursing demand within each ward for each fiscal year, representing these dynamics as an overlay of trajectories from multiple individual patients. Consequently, our study reveals ward‐specific statistical regularities in the temporal dynamics of nursing demand. In one ward, approximately 25% of patients experienced an increase in nursing demand from 1 to between 6 and 9 points from the second to the third day of hospitalization, while in another, only 0.1% showed such an increase. These findings suggest that patients admitted to the wards tend to exhibit a certain probabilistic change in nursing demand. This study can predict probabilistically the temporal variation of nursing demand among patients in the coming years by analyzing data on the temporal changes in nursing demand over the past years. Our findings are expected to significantly influence the forecasting of nursing demand and the estimation of nursing resources, leading to data‐driven and more efficient nursing management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助www采纳,获得10
刚刚
F123456完成签到 ,获得积分10
3秒前
3秒前
灵巧汉堡发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
8秒前
10秒前
character577发布了新的文献求助10
12秒前
羡阳完成签到 ,获得积分10
13秒前
13秒前
mzr发布了新的文献求助10
13秒前
领导范儿应助flysky120采纳,获得200
15秒前
16秒前
16秒前
ppw完成签到,获得积分10
16秒前
拖把丶发布了新的文献求助10
17秒前
20秒前
nykal发布了新的文献求助10
22秒前
22秒前
大模型应助HY采纳,获得10
22秒前
伊倾发布了新的文献求助10
23秒前
菠萝披萨发布了新的文献求助10
24秒前
好久不见发布了新的文献求助10
26秒前
慕青应助chrissylaiiii采纳,获得10
26秒前
29秒前
虹虹完成签到 ,获得积分10
32秒前
rnf完成签到,获得积分10
32秒前
娜扎发布了新的文献求助10
36秒前
37秒前
华仔应助123采纳,获得10
37秒前
38秒前
羡阳关注了科研通微信公众号
39秒前
40秒前
nykal完成签到,获得积分10
40秒前
41秒前
rnf完成签到,获得积分10
42秒前
42秒前
左凝珍发布了新的文献求助10
43秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142377
求助须知:如何正确求助?哪些是违规求助? 2793285
关于积分的说明 7806265
捐赠科研通 2449541
什么是DOI,文献DOI怎么找? 1303349
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601300