Update to the Neonatal Early-Onset Sepsis Calculator Utilizing a Contemporary Cohort

医学 置信区间 计算器 败血症 儿科 队列 产科 内科学 计算机科学 操作系统
作者
Michael W. Kuzniewicz,Gabriel J. Escobar,Heather Forquer,Sherian Li,Di Shu,Patricia Kipnis,Allen Fischer,Karen M. Puopolo
出处
期刊:Pediatrics [American Academy of Pediatrics]
被引量:1
标识
DOI:10.1542/peds.2023-065267
摘要

BACKGROUND AND OBJECTIVES: The Kaiser Permanente Neonatal Early-Onset Sepsis (EOS) Calculator has been an effective tool for risk stratification to safely reduce newborn antibiotic exposure. The calculator was derived from data on infants born between 1993 and 2007. Since that time, US obstetric practice has adopted universal antepartum screening for group B Streptococcus and intrapartum antibiotic prophylaxis guidance has changed. Our objective was to update the EOS calculator using a contemporary birth cohort and determine the effect of these changes on EOS case ascertainment and antibiotic recommendations. METHODS: The study included infants born at ≥35 weeks’ gestation at 14 hospitals between January 2010 and December 2020 (n = 412 595 infants, EOS cases = 113). Model coefficients were re-estimated and the point estimates of the likelihood ratios for clinical status used to calculate the posterior probability of EOS. We compared the number of EOS cases correctly identified by each model (sensitivity) and the proportion of infants for whom empirical antibiotics are recommended. RESULTS: The original model had a sensitivity of 0.76 (95% confidence interval 0.63–0.85), while the updated model had a sensitivity of 0.80 (95% confidence interval 0.68–0.89), P = .15. The recommended empirical antibiotic use was 3.5% with the original model and 3.7% with the updated model, P < .0001. For each additional case identified by the updated model, an additional 158 infants would be treated with antibiotics. CONCLUSIONS: Both the original and updated EOS calculators are effective tools for quantifying EOS risk among infants born at ≥35 weeks’ gestation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shilong.yang完成签到,获得积分10
刚刚
jy发布了新的文献求助10
1秒前
2秒前
2秒前
梦里发布了新的文献求助10
3秒前
falcon完成签到 ,获得积分10
4秒前
劈里啪啦发布了新的文献求助10
5秒前
耿强发布了新的文献求助10
5秒前
科研通AI5应助坚强的樱采纳,获得10
5秒前
陈杰发布了新的文献求助10
5秒前
nozero完成签到,获得积分10
7秒前
澜生发布了新的文献求助10
8秒前
在水一方应助惠惠采纳,获得10
8秒前
852应助zZ采纳,获得10
8秒前
小马甲应助陌路采纳,获得10
9秒前
1335804518完成签到 ,获得积分10
10秒前
10秒前
甜甜醉波完成签到,获得积分10
10秒前
科研通AI2S应助卷卷王采纳,获得10
11秒前
可爱的函函应助梦里采纳,获得10
11秒前
沐晴完成签到,获得积分10
12秒前
入夏完成签到,获得积分10
12秒前
12秒前
12秒前
苏州小北发布了新的文献求助10
13秒前
13秒前
snail完成签到,获得积分10
14秒前
劈里啪啦完成签到,获得积分10
14秒前
wanci应助Jasmine采纳,获得10
15秒前
aoxiangcaizi12完成签到,获得积分10
15秒前
ding应助通~采纳,获得30
16秒前
17秒前
Annie发布了新的文献求助10
17秒前
晨曦完成签到,获得积分10
18秒前
十一发布了新的文献求助10
18秒前
顾矜应助Peter采纳,获得30
19秒前
Ayanami完成签到,获得积分10
19秒前
英俊的铭应助ysl采纳,获得30
19秒前
酷波er应助范范采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794