Prospects and Challenges of AI and Neural Network Algorithms in MEMS Microcantilever Biosensors

生物传感器 微电子机械系统 自动化 人工神经网络 计算机科学 纳米技术 灵敏度(控制系统) 数码产品 工程类 人工智能 材料科学 机械工程 电气工程 电子工程
作者
Jingjing Wang,Baozheng Xu,Libo Shi,Long Zhu,Xi Wang
出处
期刊:Processes [MDPI AG]
卷期号:10 (8): 1658-1658 被引量:5
标识
DOI:10.3390/pr10081658
摘要

This paper focuses on the use of AI in various MEMS (Micro-Electro-Mechanical System) biosensor types. Al increases the potential of Micro-Electro-Mechanical System biosensors and opens up new opportunities for automation, consumer electronics, industrial manufacturing, defense, medical equipment, etc. Micro-Electro-Mechanical System microcantilever biosensors are currently making their way into our daily lives and playing a significant role in the advancement of social technology. Micro-Electro-Mechanical System biosensors with microcantilever structures have a number of benefits over conventional biosensors, including small size, high sensitivity, mass production, simple arraying, integration, etc. These advantages have made them one of the development avenues for high-sensitivity sensors. The next generation of sensors will exhibit an intelligent development trajectory and aid people in interacting with other objects in a variety of scenario applications as a result of the active development of artificial intelligence (AI) and neural networks. As a result, this paper examines the fundamentals of the neural algorithm and goes into great detail on the fundamentals and uses of the principal component analysis approach. A neural algorithm application in Micro-Electro-Mechanical System microcantilever biosensors is anticipated through the associated application of the principal com-ponent analysis approach. Our investigation has more scientific study value, because there are currently no favorable reports on the market regarding the use of AI with Micro-Electro-Mechanical System microcantilever sensors. Focusing on AI and neural networks, this paper introduces Micro-Electro-Mechanical System biosensors using artificial intelligence, which greatly promotes the development of next-generation intelligent sensing systems, and the potential applications and prospects of neural networks in the field of microcantilever biosensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eyu完成签到,获得积分20
1秒前
浅音发布了新的文献求助10
2秒前
2秒前
2秒前
sfzz完成签到,获得积分10
2秒前
2秒前
ls完成签到,获得积分10
3秒前
jackycas发布了新的文献求助10
3秒前
poyo完成签到,获得积分10
3秒前
情怀应助5114wwxx采纳,获得10
3秒前
3秒前
lawfy发布了新的文献求助100
3秒前
李健的小迷弟应助小张采纳,获得10
4秒前
酷波er应助合适的翠芙采纳,获得10
4秒前
赵立双发布了新的文献求助10
4秒前
vv发布了新的文献求助10
4秒前
tooty发布了新的文献求助10
5秒前
wsff完成签到,获得积分10
6秒前
毛豆应助Ph采纳,获得10
6秒前
6秒前
小吴发布了新的文献求助30
7秒前
歪比巴卜完成签到,获得积分10
7秒前
康荣濠发布了新的文献求助10
7秒前
8秒前
浅音完成签到,获得积分10
8秒前
jackycas完成签到,获得积分10
8秒前
DRYAN完成签到,获得积分10
9秒前
9秒前
9秒前
迷路的松思完成签到,获得积分10
10秒前
风中扬发布了新的文献求助10
11秒前
CodeCraft应助林梓峰采纳,获得10
12秒前
机灵笑蓝完成签到,获得积分10
13秒前
康荣濠完成签到,获得积分10
13秒前
葡萄籽完成签到,获得积分10
14秒前
WANG发布了新的文献求助10
14秒前
淡然安雁应助於不正采纳,获得70
16秒前
16秒前
彭川宁完成签到,获得积分10
16秒前
体贴的苞络完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300829
求助须知:如何正确求助?哪些是违规求助? 2935701
关于积分的说明 8474178
捐赠科研通 2609278
什么是DOI,文献DOI怎么找? 1424706
科研通“疑难数据库(出版商)”最低求助积分说明 662065
邀请新用户注册赠送积分活动 645879