iPro2L-DG: Hybrid network based on improved densenet and global attention mechanism for identifying promoter sequences

机制(生物学) 计算生物学 计算机科学 人工智能 计算机网络 生物 物理 量子力学
作者
Rufeng Lei,Jianhua Jia,Lulu Qin,Xin Wei
出处
期刊:Heliyon [Elsevier]
卷期号:10 (6): e27364-e27364
标识
DOI:10.1016/j.heliyon.2024.e27364
摘要

The promoter is a key DNA sequence whose primary function is to control the initiation time and the degree of expression of gene transcription. Accurate identification of promoters is essential for understanding gene expression studies. Traditional sequencing techniques for identifying promoters are costly and time-consuming. Therefore, the development of computational methods to identify promoters has become critical. Since deep learning methods show great potential in identifying promoters, this study proposes a new promoter prediction model, called iPro2L-DG. The iPro2L-DG predictor, based on an improved Densely Connected Convolutional Network (DenseNet) and a Global Attention Mechanism (GAM), is constructed to achieve the prediction of promoters. The promoter sequences are combined feature encoding using C2 encoding and nucleotide chemical property (NCP) encoding. An improved DenseNet extracts advanced feature information from the combined feature encoding. GAM evaluates the importance of advanced feature information in terms of channel and spatial dimensions, and finally uses a Full Connect Neural Network (FNN) to derive prediction probabilities. The experimental results showed that the accuracy of iPro2L-DG in the first layer (promoter identification) was 94.10% with Matthews correlation coefficient value of 0.8833. In the second layer (promoter strength prediction), the accuracy was 89.42% with Matthews correlation coefficient value of 0.7915. The iPro2L-DG predictor significantly outperforms other existing predictors in promoter identification and promoter strength prediction. Therefore, our proposed model iPro2L-DG is the most advanced promoter prediction tool. The source code of the iPro2L-DG model can be found in https://github.com/leirufeng/iPro2L-DG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助你是千堆雪采纳,获得10
1秒前
哒哒哒完成签到,获得积分10
2秒前
4秒前
MAY完成签到,获得积分10
5秒前
6秒前
在内卷中躺平的混子完成签到,获得积分10
6秒前
眞_完成签到 ,获得积分10
6秒前
脑三问发布了新的文献求助10
6秒前
同城代打完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
懒洋洋tzy发布了新的文献求助10
10秒前
香蕉觅云应助xxx采纳,获得10
11秒前
壹号发布了新的文献求助10
12秒前
乐乐应助同城代打采纳,获得10
12秒前
dophin应助木子采纳,获得10
12秒前
远志完成签到,获得积分10
12秒前
怕黑寒烟关注了科研通微信公众号
12秒前
lovelife发布了新的文献求助10
12秒前
顺心的老五完成签到,获得积分10
12秒前
Hello应助LCMLSM采纳,获得10
13秒前
饲料批发发布了新的文献求助10
13秒前
9527完成签到,获得积分10
14秒前
zc完成签到,获得积分10
14秒前
搜集达人应助动听的刚采纳,获得10
16秒前
17秒前
李安全完成签到,获得积分10
18秒前
华仔应助壹号采纳,获得10
18秒前
18秒前
深情黑米完成签到,获得积分20
19秒前
19秒前
19秒前
20秒前
顺利兰完成签到 ,获得积分10
20秒前
22秒前
莹66发布了新的文献求助20
22秒前
23秒前
23秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434089
求助须知:如何正确求助?哪些是违规求助? 3031323
关于积分的说明 8941651
捐赠科研通 2719262
什么是DOI,文献DOI怎么找? 1491703
科研通“疑难数据库(出版商)”最低求助积分说明 689427
邀请新用户注册赠送积分活动 685580