Impact of surface biofunctionalization strategies on key effector cells response in polyacrylamide hydrogels for bone regeneration

自愈水凝胶 再生(生物学) 间充质干细胞 材料科学 粘附 细胞粘附 生物物理学 丙烯酰胺 生物医学工程 化学 高分子化学 细胞生物学 聚合物 复合材料 医学 共聚物 生物
作者
Yi Zhang,Jinjun Dai,Ruiyue Hang,Xiaohong Yao,Long Bai,Di Huang,Ruiqiang Hang
出处
期刊:Biomaterials advances 卷期号:158: 213768-213768 被引量:1
标识
DOI:10.1016/j.bioadv.2024.213768
摘要

Despite the clinical prevalence of various bone defect repair materials, a full understanding of their influence on bone repair and regeneration remains elusive. This study focuses on poly(acrylamide) (PAAm) hydrogels, popular 2D model substrates, which have regulable mechanical properties within physiological. However, their bio-inert nature requires surface biofunctionalization to enhance cell-material interactions and facilitate the study of bone repair mechanisms. We utilized PAAm hydrogels of varying stiffness (18, 76 and 295 kPa), employed sulfosuccinimidyl-6-(4′-azido-2′-nitropheny-lamino) hexanoate (sulfo-SANPAH) and N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride/N-hydroxysuccinimidyl acrylate (EDC/NHS) as crosslinkers, and cultured macrophages, endothelial cells, and bone mesenchymal stem cells on these hydrogels. Our findings indicated that sulfo-SANPAH's crosslinking efficiency surpassed that of EDC/NHS, irrespective of pore size and stiffness. Importantly, we observed that the stiffness and surface biofunctionalization method of hydrogels significantly impacted cell adhesion and proliferation. The collagen-modified hydrogels by EDC/NHS strategy failed to support the normal biological behavior of bone mesenchymal stem cells and hindered endothelial cell spreading. In contrast, these modified hydrogels by the sulfo-SANPAH method showed good cytocompatibility with the three types of cells. This study underscores the critical role of appropriate conjugation strategies for PAAm hydrogels, providing valuable insights for hydrogel surface modification in bone repair and regeneration research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AME发布了新的文献求助10
1秒前
遵纪守法文明人家完成签到 ,获得积分10
1秒前
木火完成签到,获得积分10
1秒前
3秒前
3秒前
4秒前
4秒前
tianchi完成签到,获得积分10
4秒前
科研通AI5应助大胆的翠安采纳,获得30
4秒前
京客家发布了新的文献求助10
4秒前
科研通AI5应助伊吹风子采纳,获得10
4秒前
大饼哥完成签到,获得积分10
6秒前
7秒前
原来是你完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
不如一默发布了新的文献求助10
8秒前
谷粱发布了新的文献求助10
9秒前
scienceL发布了新的文献求助10
9秒前
当当羊.发布了新的文献求助10
10秒前
fy207完成签到,获得积分10
10秒前
852应助33采纳,获得10
11秒前
11秒前
12秒前
愤怒的千凝完成签到 ,获得积分10
12秒前
ysxlybt2发布了新的文献求助10
13秒前
14秒前
情怀应助科研通管家采纳,获得10
14秒前
14秒前
李健应助科研通管家采纳,获得30
14秒前
完美世界应助科研通管家采纳,获得30
15秒前
小马甲应助潇潇雨歇采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
黑暗系发布了新的文献求助30
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
科目三应助HongJiang采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543107
求助须知:如何正确求助?哪些是违规求助? 3120526
关于积分的说明 9342707
捐赠科研通 2818521
什么是DOI,文献DOI怎么找? 1549648
邀请新用户注册赠送积分活动 722213
科研通“疑难数据库(出版商)”最低求助积分说明 713049